ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

3.3V Differential 1:8 Fanout Clock Data Driver with HCSL Outputs

Description

The NB3N108K is a differential 1:8 Clock fanout buffer with High-speed Current Steering Logic (HCSL) outputs optimized for ultra low propagation delay variation. The NB3N108K is designed with HCSL PCI Express clock distribution and FBDIMM applications in mind.

Inputs can directly accept differential LVPECL, LVDS, HCSL signals per Figures 7, 8, and 9. Single-ended LVPECL, HCSL, LVCMOS, or LVTTL levels are accepted with a proper external V_{th} reference supply per Figures 4 and 10. Input pins incorporate separate internal 50 Ω termination resistors allowing additional single ended system interconnect flexibility.

Output drive current is set by connecting a 475 Ω resistor from IREF (Pin 1) to GND per Figure 6. Outputs can also interface to LVDS receivers when terminated per Figure 11.

The NB3N108K specifically guarantees low output-to-output skews. Optimal design, layout, and processing minimize skew within a device and from device to device. System designers can take advantage of the NB3N108K's performance to distribute low skew clocks across the backplane or the motherboard.

Features

- Typical Input Clock Frequency 100, 133, 166, or 400 MHz
- 220 ps Typical Rise and Fall Times
- 800 ps Typical Propagation Delay
- Δtpd 100 ps Maximum Propagation Delay Variation Per Each Diff Pair
- 0.1 ps Typical Integrated Phase Jitter RMS
- Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.6 V with $V_{EE} = 0 \text{ V}$
- Differential HCSL Output Levels
- LVDS Output Levels with Interface Termination
- These are Pb-Free Devices

Applications

- Clock Distribution
- PCIe I, II, III
- Networking and Communications
- High End Computing
- Routers

End Products

- Servers
- FBDIMM Memory Card
- Ethernet Switch/Routers

ON Semiconductor®

http://onsemi.com

QFN32 MN SUFFIX CASE 488AM

MARKING DIAGRAM*

A = Assembly Location

WL = Wafer Lot
 YY = Year
 WW = Work Week
 G = Pb-Free Package

*For additional marking information, refer to

Application Note AND8002/D.

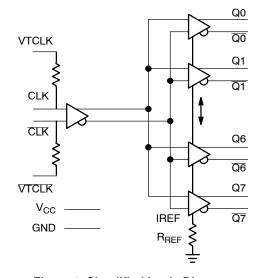


Figure 1. Simplified Logic Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

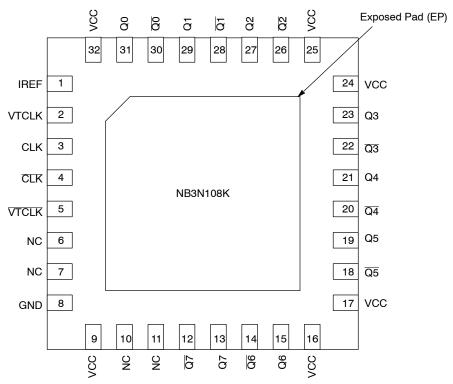


Figure 2. Pinout Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description	
1	IREF		Use the IREF pin to set the output drive. Connect a 475 Ω RREF resistor from the IREF pin to GND to produce 2.6 mA of IREF current. A current mirror multiplies IREF by a factor of 5.4x to force 14 mA through a 50 Ω output load. See Figures 6 and 12.	
2, 5	VTCLK, VTCLK	-	Internal 50 Ω Termination Resistor connection Pins. In the differential configuration when the input termination pins are connected to the common termination voltage, and if no signal is applied then the device may be susceptible to self–oscillation.	
3	CLK	LVPECL HCSL, LVDS Input	Clock (TRUE) Input	
4	CLK	LVPECL HCSL, LVDS Input	Clock (INVERT) Input	
12, 14, 18, 20, 22, 26, 28, 30	Q[7–0]b	HCSL or LVDS (Note 1) Output	Output (INVERT) (Note 1)	
13, 15, 19, 21, 23, 27, 29, 31	Q[7-0]	HCSL or LVDS (Note 1) Output	Output (TRUE) (Note 1)	
6, 7, 10, 11	NC		No Connect	
8	GND	-	Supply Ground. GND pin must be externally connected to power supply to guarantee proper operation.	
9, 16, 17, 24, 25, 32	VCC	-	Positive Voltage Supply pin. VCC pins must be externally connected a power supply to guarantee proper operation.	
Exposed Pad	EP	GND	Exposed Pad. The thermally exposed pad (EP) on package bottom case drawing) must be attached to a sufficient heat–sinking conduit proper thermal operation and electrically connected to the circuit bo ground (GND).	

^{1.} Outputs can also interface to LVDS receiver when terminated per Figure 11.

Table 2. ATTRIBUTES

Characteris	Value			
ESD Protection	Human Body Model Machine Model	>2 kV 200 V		
Moisture Sensitivity (Note 2)	QFN-52	Level 1		
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in		
Transistor Count		286		
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test				

^{2.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS (Note 3)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		4.6	V
VI	Positive Input	GND = 0 V		$GND - 0.3 \le V_I \le V_{CC}$	V
Іоит	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range	QFN32		-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 lfpm 500 lfpm	QFN32 QFN32	31 27	°C/W
θJC	Thermal Resistance (Junction-to-Case)	2S2P (Note 3)	QFN32	12	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

3. JEDEC standard 51–6, multilayer board – 2S2P (2 signal, 2 power) with eight filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS ($V_{CC} = 3.0 \text{ V}$ to 3.6 V, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ Note 4)

Symbol	Characteristic	Min	Тур	Max	Unit
I _{GND}	GND Supply Current (All Outputs Loaded)		60	90	mA
I _{CC}	Power Supply Current (All Outputs Loaded)		190	230	mA
I _{IH}	Input HIGH Current		2.0	150	μΑ
I _{IL}	Input LOW Current	-150	-2.0		μΑ
R _{TIN}	Internal Input Termination Resistor	45	50	55	Ω
DIFFERE	NTIAL INPUT DRIVEN SINGLE-ENDED				
V _{th}	Input Threshold Reference Voltage Range (Note 5)	350		V _{CC} – 1000	mV
V _{IH}	Single – Ended Input HIGH Voltage	V _{th} + 150		V_{CC}	mV
V _{IL}	Single – Ended Input LOW Voltage	GND		V _{th} – 150	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 7, 8 and 9)				
V_{IHD}	Differential Input HIGH Voltage	425		V _{CC} – 850	mV
V_{ILD}	Differential Input LOW Voltage	GND		V _{CC} – 1000	mV
V _{ID}	Differential Input Voltage (V _{IHD} - V _{ILD})	150		V _{CC} – 850	mV
V_{CMR}	Input Common Mode Range	350		V _{CC} – 1000	mV
HCSL OL	ITPUTS (Figure 4)				
V _{OH}	Output HIGH Voltage	600	740	900	mV
V _{OL}	Output LOW Voltage	-150	0	150	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{4.} Measurements taken with with outputs loaded 50 Ω to GND, see Figure 6. Connect a 475 Ω resistor from IREF (Pin 1) to GND per Figure 6.

^{5.} V_{th} is applied to the complementary input when operating in single ended mode per Figure 4.

Table 5. AC CHARACTERISTICS $V_{CC} = 3.0 \text{ V}$ to 3.6 V, GND = 0 V; -40°C to $+85^{\circ}\text{C}$ (Note 6)

Symbol	Characteristic	Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude (@ V _{INPPmin}) f _{in} ≤ 400 MHz		725	1000	mV
t _{PLH} , t _{PHL}	Propagation Delay (See Figure 3a) CLK/CLK to Qx/Qx	550	800	1100	ps
Δt _{PLH} , Δt _{PHL}	Propagation Delay Variation Per Each Diff Pair (Note 7) (See Figure 3a) CLK/CLK to Qx/Qx			100	ps
t _{SKEW}	Duty Cycle Skew (Note 8) Within –Device Skew Device to Device Skew (Note 9)			20 100 150	ps
t _{JITφ}	Integrated Phase Jitter RMS (Note 10)		0.1		ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration)	0.150		V _{CC} - 0.85	٧
V _{CROSS}	Absolute Crossing Magnitude Voltage (See Figure 3b)	250		550	mV
ΔV_{CROSS}	Variation in Magnitude of V _{CROSS} (See Figure 3b)			150	mV
t _r , t _f	Absolute Magnitude in Output Risetime and Falltime (from 175 mV to 525 mV) (See Figure 3b) Qx, Qx	150	220	400	ps
Δtr, Δtf	Variation in Magnitude of Risetime and Falltime (Single-Ended) (See Figure 3b) Qx, Qx			125	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 6. Measured by forcing V_{INPP} (MIN) from a 50% duty cycle. Measurement taken with all outputs loaded 50 Ω to GND per Figure 6. Connect a 475 Ω resistor from IREF (Pin 1) to GND per Figure 6.
- 7. Measured from the input pair crosspoint to each single output pair crosspoint across temp and voltage ranges per Figure 3.
- 8. Duty cycle skew is measured between differential outputs using the deviations of the sum of T_{pw-} and T_{pw+}.
- 9. Skew is measured between outputs under identical transition conditions @ 50 MHz.
- 10. Phase noise integrated from 12 kHz to 20 MHz.

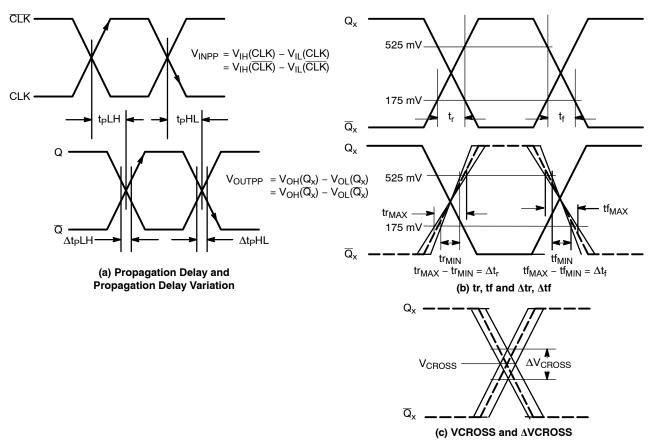
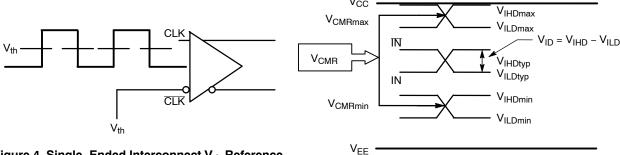
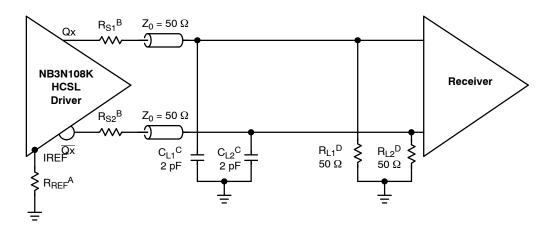


Figure 3. AC Reference Measurement

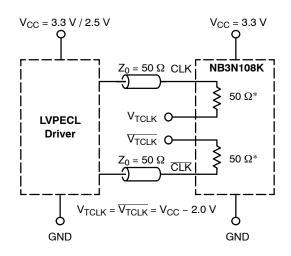
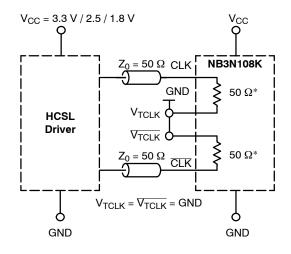
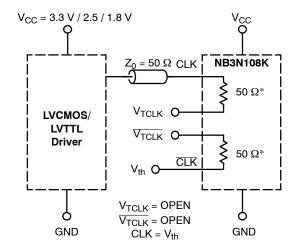

Figure 4. Single-Ended Interconnect V_{th} Reference Voltage

Figure 5. V_{th} Diagram

- **A**. Connect 475 Ω resistor RREF from IREF pin to GND.
- $\textbf{B}.~R_{S1},\,R_{S2}\!:$ 0 Ω for Test and Evaluation. Select to Minimizing Ringing.
- C. C_{L1}, C_{L2}: Receiver Input Simulation (for test only not added to application circuit.
- **D.** D_{L1}, D_{L2} Termination and Load Resistors Located at Received Inputs.

Figure 6. Typical Termination Configuration for Output Driver and Device Evaluation


*RTIN, Internal Input Termination Resistor


 $V_{CC} = 3.3 \text{ V} / 2.5 \text{ V} / 1.8 \text{ V}$ V_{CC} = 3.3 V = 50 Ω CLK **NB3N108K** 50 Ω* V_{TCLK} **LVDS** Driver $\overline{V_{TCLK}}$ = 50 Ω CLK $V_{TCLK} = \overline{V_{TCLK}}$ Q Ò GND GND

*RTIN, Internal Input Termination Resistor

Figure 7. LVPECL Interface

Figure 8. LVDS Interface

*RTIN, Internal Input Termination Resistor

*RTIN, Internal Input Termination Resistor

Figure 9. Standard 50 Ω Load HCSL

Figure 10. LVCMOS/LVTTL Interface

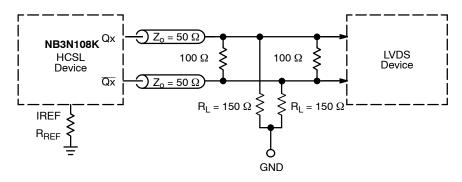


Figure 11. HCSL Interface Termination to LVDS

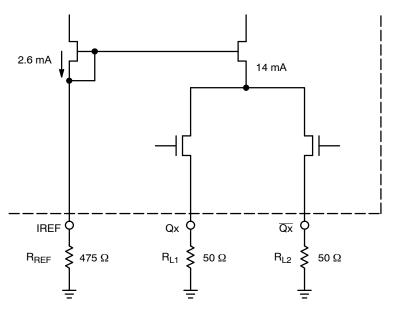


Figure 12. HCSL Simplified Output Structure

ORDERING INFORMATION

Device	Package	Shipping [†]
NB3N108KMNG	QFN32 (Pb-Free)	74 Units / Rail
NB3N108KMNR4G	QFN32 (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.