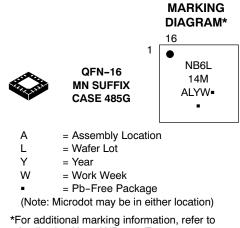
2.5 V/3.3 V 3.0 GHz Differential 1:4 CML Fanout Buffer

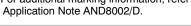
Multi-Level Inputs with Internal Termination

Description

The NB6L14M is a 3.0 GHz differential 1:4 CML clock or data fanout buffer. The differential inputs incorporate internal 50 Ω termination resistors that are accessed through the VT pin. This feature allows the NB6L14M to accept various logic standards, such as LVPECL, CML, or LVDS logic levels. The 16 mA differential CML outputs provide matching internal 50 Ω terminations and produce 400 mV output swings when externally terminated with a 50 Ω resistor to V_{CC}. The V_{REFAC} reference output can be used to rebias capacitor-coupled differential or single-ended input signals. The 1:4 fanout design was optimized for low output skew applications.

The NB6L14M is a member of the ECLinPS MAX[™] family of high performance clock and data products.


Features


- Input Clock Frequency > 3.0 GHz
- Input Data Rate > 2.5 Gb/s
- < 20 ps Within Device Output Skew
- 350 ps Typical Propagation Delay
- 90 ps Typical Rise and Fall Times
- Differential CML Outputs, 340 mV Amplitude, Typical
- CML Mode Operating Range: $V_{CC} = 2.375$ V to 3.63 V with GND = 0 V
- Internal Input and Output Termination Resistors, 50 Ω
- V_{REFAC} Reference Output Voltage
- -40°C to +85°C Ambient Operating Temperature
- Available in 3 mm x 3 mm 16 Pin QFN
- These are Pb-Free Devices

ON Semiconductor®

http://onsemi.com

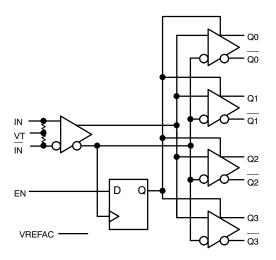


Figure 1. Simplified Logic Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

1

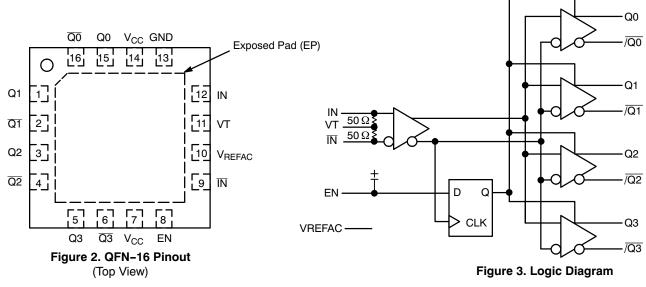


Table 1. EN TRUTH TABLE

IN	IN	EN	Q0:Q3	Q0:Q3
0	1	1	0	1
1	0	1	1	0
x	x	0	0+	1+

+ = On next negative transition of the input signal (IN).

x = Don't care.

Table 2. PIN DESCRIPTION

Pin	Name	I/O	Description	
1	Q1	CML Output	Non-inverted Differential Output. Typically Terminated with 50 Ω Resistor to V_CC.	
2	Q1	CML Output	Inverted Differential Output. Typically Terminated with 50 Ω Resistor to V_{CC} .	
3	Q2	CML Output	Non-inverted Differential Output. Typically Terminated with 50 Ω Resistor to V_CC.	
4	Q2	CML Output	Inverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{CC} .	
5	Q3	CML Output	Non-inverted Differential Output. Typically Terminated with 50 Ω Resistor to V_CC.	
6	Q3	CML Output	Inverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{CC} .	
7	V _{CC}	-	Positive Supply Voltage	
8	EN	LVTTL/LVCMOS	Synchronous Output Enable. When LOW, Q outputs will go LOW and \overline{Q} outputs will go HIGH on the next negative transition of IN input. The internal D _{FF} register is clocked on the falling edge of IN input (see Figure 16). The EN pin has an internal pullup resistor and defaults HIGH when left open.	
9	ĪN	LVPECL, CML, LVDS	Inverted Differential Clock Input. Internal 50 Ω Resistor to Termination Pin, VT.	
10	V _{REFAC}		Output Voltage Reference for capacitor-coupled inputs, only.	
11	VT		Internal 100 Ω center-tapped Termination Pin for IN and \overline{IN} .	
12	IN	LVPECL, CML, LVDS	Non-inverted Differential Clock Input. Internal 50 Ω Resistor to Termination Pin, VT.	
13	GND	-	Negative Supply Voltage	
14	V _{CC}	-	Positive Supply Voltage	
15	Q0	CML Output	Noninverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{CC} .	
16	<u>Q0</u>	CML Output	Inverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{CC} .	
-	EP	-	The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is not electrically connected to the die, but is recommended to be electrically and thermally connected to GND on the PC board.	

1. In the differential configuration when the input termination pin VT, is connected to a common termination voltage or left open, and if no signal is applied on IN/IN inputs, then the device will be susceptible to self-oscillation.

Table 3. ATTRIBUTES

Characterist	Value			
ESD Protection	Human Body Model Machine Mode	> 2 kV > 200 V		
Moisture Sensitivity (Note 2)	QFN-16	Level 1		
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in		
Transistor Count	167			
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test				

2. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		4.0	V
V _{lo}	Positive Input/Output	GND = 0 V	$-0.5~\text{V} \leq \text{V}_{\text{IO}} \leq \text{V}_{\text{CC}} + 0.5~\text{V}$	4.5	V
I _{IN}	Input Current Source or Sink Current (IN/IN)			±50	mA
IVREFAC	Sink/Source Current			±2.0	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 lfpm 500 lfpm	QFN-16 QFN-16	42 35	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	2S2P (Note 3)	QFN-16	4	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
3. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS, Multi-Level Inputs, CML Outputs

 $V_{CC} = 2.375$ V to 3.63 V, GND = 0 V, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C

Symbol	Characteristic	Min	Тур	Max	Unit	
I _{CC}	Power Supply Current (Inputs and Outputs Open)	80	100	130	mA	
CML OUTPL	JT (Notes 4 and 5)					
V _{OH}	Output HIGH Voltage $\label{eq:V_CC} \begin{array}{c} V_{CC} = 3.3 \ V \\ V_{CC} = 2.5 \ V \end{array}$	V _{CC} - 40 3260 2460	V _{CC} - 10 3290 2490	V _{CC} 3300 2500	mV	
V _{OL}	Output LOW Voltage $\label{eq:VCC} \begin{array}{c} V_{CC} = 3.3 \ V \\ V_{CC} = 2.5 \ V \end{array}$	V _{CC} - 500 2800 2000	V _{CC} - 400 2900 2100	V _{CC} - 300 3000 2200	mV	
DIFFERENT	IAL INPUT DRIVEN SINGLE-ENDED (See Figures 5 and 6)		•			
V _{th}	Input Threshold Reference Voltage Range (Note 6)	1100		V _{CC} - 100	mV	
V _{IH}	Single-Ended Input High Voltage	V _{th} + 100		V _{CC}	mV	
V _{IL}	Single-Ended Input LOW Voltage	GND		V _{th} – 100	mV	
V _{ISE}	Single-Ended Input Voltage Amplitude (VIH - VIL)	200		V _{CC} – GND	mV	
V _{REFAC}	·		•			
V _{REFAC}	Output Reference Voltage ($V_{CC} \ge 2.5 \text{ V}$)	V _{CC} - 1525	V _{CC} - 1425	V _{CC} - 1325	mV	
DIFFERENT	IAL INPUTS DRIVEN DIFFERENTIALLY (See Figures 7 and	8) (Note 7)				
V _{IHD}	Differential Input HIGH Voltage	1200		V _{CC}	mV	
V _{ILD}	Differential Input LOW Voltage	GND		V _{IHD} – 100	mV	
V _{ID}	Differential Input Voltage (IN-IN) (VIHD-VILD)	100		V _{CC} – GND	mV	
V _{CMR}	Input Common Mode Range (Differential Configuration) (Note 8)	950		V _{CC} – 50	mV	
IIH	Input HIGH Current IN/IN (VT Open)	-150		+150	μA	
IIL	Input LOW Current IN/IN (VT Open)	-150		+150	μA	
LVTTL/LVCM	NOS INPUT DC ELECTRICAL CHARACTERISTICS					
V _{IH}	Input HIGH Voltage	2.0		V _{CC}	V	
V _{IL}	Input LOW Voltage	GND		0.8	V	
I _{IH}	Input HIGH Current, $V_{CC} = V_{IN} = 3.63 \text{ V}$	-150		+150	μA	
I _{IL}	Input LOW Current, V_{CC} = 3.63 V, V_{IN} = 0 V	-150		+150	μA	
TERMINATIO	ON RESISTORS					
R _{TIN}	Internal Input Termination Resistor (IN to VT)	40	50	60	Ω	
R _{DIFF_IN}	Differential Input Resistance (IN to IN)	80	100	120	Ω	
R _{TOUT}	Internal Output Termination Resistor	40	50	60	Ω	

board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

4. CML outputs loaded with 50 Ω to V_{CC} for proper operation. 5. Input and output parameters vary 1:1 with V_{CC}.

6. V_{th} is applied to the complementary input when operating in single-ended mode.

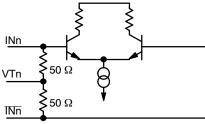
7. V_{IHD} , V_{ILD} , V_{ID} and V_{CMR} parameters must be complied with simultaneously. 8. V_{CMR} minimum varies 1:1 with GND, V_{CMR} max varies 1:1 with V_{CC} . The V_{CMR} range is referenced to the most positive side of the differential input signal.

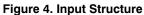
Symbol	Characteristic	N	lin	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude (@ V _{INPPmin}) (Note 10) $f_{in} \le 2.5 \text{ GH} \\ 2.5 \text{ GHz} \le f_{in} \le 3.0 \text{ GH}.$		80 00	340 250		mV
f _{DATA}	Maximum Operating Data Rate			2.5		Gb/s
t _{PD}	Propagation Delay IN t	0Q 2	30	350	480	ps
t _S	Set-Up Time (Note 11) EN to IN, If	۱ 3	00			ps
t _H	Hold Time (Note 11) EN to IN, If	۱ 3	00			ps
t _{SKEW}	Within-Device Skew (Note 12) Device-to-Device Skew (Note 13)			5.0	20 80	ps
t _{DC}		z 4	10	50	60	%
UITTER	$ \begin{array}{l} \mbox{RMS Random Jitter (Note 14)} & f_{\mbox{IN}} \leq 3.0 \mbox{ GH} \\ \mbox{Peak-to-Peak Data Dependent Jitter} & f_{\mbox{DATA}} \leq 3.0 \mbox{ Gb} \\ \mbox{(Note 15)} & f_{\mbox{DATA}} \leq 3.0 \mbox{ Gb} \\ \end{array} $			0.2 20	0.5	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 10)	1	00		V _{CC} - GND	mV
t _r ,t _f	Output Rise/Fall Times (20%-80%)			90	150	ps

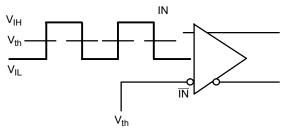
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Measured by forcing V_{INPP} (minimum) from a 50% duty cycle clock source. All loading with an external R_L = 50 Ω to V_{CC}. Input edge rates 40 ps (20%–80%).

10. Input and output voltage swing is a single-ended measurement operating in differential mode.


11. Set-up and hold times apply to synchronous applications that intend to enable/disable before the next clock cycle. For asynchronous applications, set-up and hold times do not apply.


12. Within device skew is measured between two different outputs under identical power supply, temperature and input conditions.


13. Device to device skew is measured between outputs under identical transition @ 0.5 GHz.

14. Additive RMS jitter with 50% duty cycle clock signal.

15. Additive peak-to-peak data dependent jitter with input NRZ data at PRBS 23-1 and K28.5 at 2.5 Gb/s.

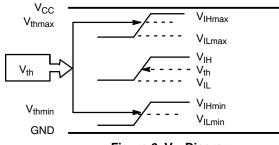
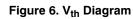



Figure 5. Differential Input Driven Single-Ended

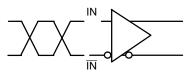


Figure 7. Differential Inputs Driven Differentially

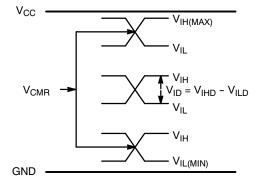


Figure 8. V_{CMR} Diagram

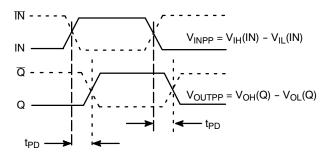


Figure 9. AC Reference Measurement

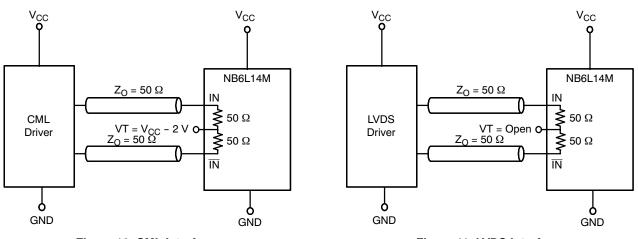
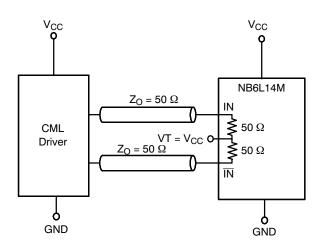
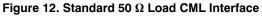
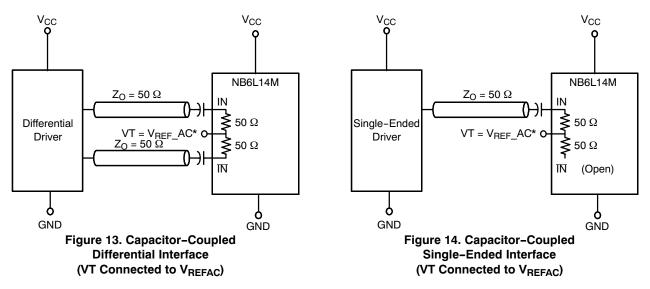





Figure 11. LVDS Interface

*V_{REFAC} bypassed to ground with a 0.01 μF capacitor

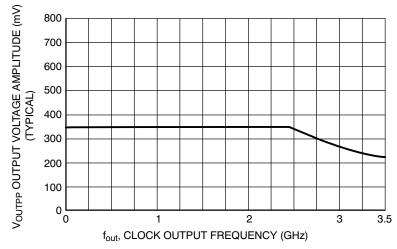
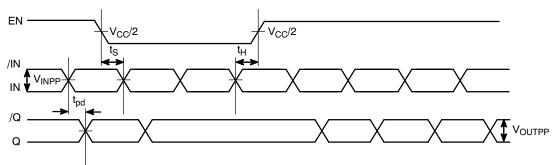



Figure 15. Output Voltage Amplitude (V_{OUTPP}) versus Output Frequency at Ambient Temperature (Typical)

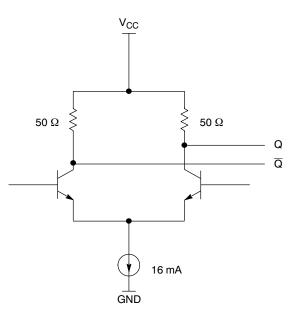


Figure 17. CML Output Structure

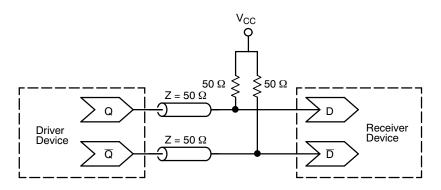
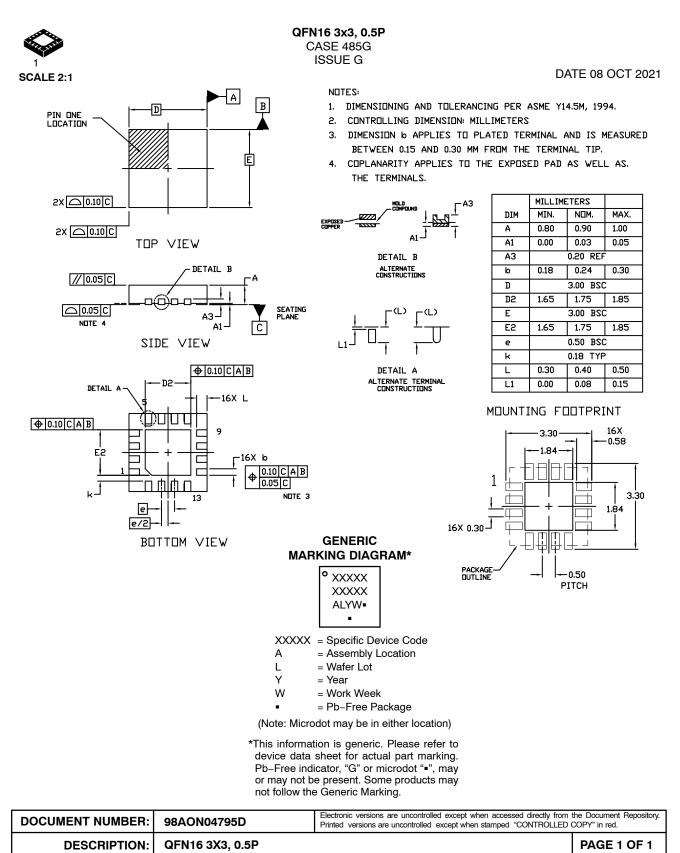


Figure 18. Typical CML Termination for Output Driver and Device Evaluation


ORDERING INFORMATION

Device	Package	Shipping [†]
NB6L14MMNG	QFN-16, 3x3 mm (Pb-Free)	123 Units / Rail
NB6L14MMNR2G	QFN-16, 3x3 mm (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ECLinPS MAX is a trademark of Semiconductor Components Industries, LLC (SCILLC).

onsemi

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.