2.5V / 3.3V Dual 2:1 Differential Clock / Data Multiplexer with LVPECL Outputs

Multi-Level Inputs w/ Internal Termination

The NB6L56 is a high performance Dual 2–to–1 Differential Clock or Data multiplexer. The differential inputs incorporate internal 50 Ω termination resistors that are accessed through the VT pin. This feature allows the NB6L56 to accept various Differential logic level standards, such as LVPECL, CML or LVDS. Outputs are 800 mV LVPECL signals. For interface options see Figures 12 – 15.

The NB6L56 produces minimal Clock or Data jitter operating up to 2.5 GHz or 2.5 Gbps, respectively. As such, the NB6L56 is ideal for SONET, GigE, Fiber Channel, Backplane and other Clock/Data distribution applications.

The NB6L56 is offered in a low profile 5 mm x 5 mm 32–pin QFN package and is a member of the ECLinPS MAXTM family of high performance Clock / Data products. Application notes, models, and support documentation are available at <u>www.onsemi.com</u>.

Features

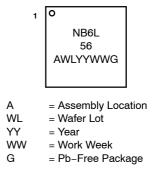
- Maximum Input Data Rate > 2.5 Gbps
- Maximum Input Clock Frequency > 2.5 GHz
- Jitter
 - < 1 ps RMS RJ (Data)
 - < 10 ps PP DJ (Data)
 - < 0.7 ps RMS Crosstalk induced jitter (CLOCK)
- 360 ps Max Propagation Delay
- 180 ps Max Rise and Fall Times
- Operating Range: V_{CC} = 2.5 ± 5% (2.375 V to 2.625 V) V_{CC} = 3.3 ± 10% (3.0 V to 3.6 V)
- Internal 50 Ω Input Termination Resistors
- Industrial Temp. Range (-40°C to 85°C)
- QFN-32 Package
- These are Pb–Free Devices

Applications

- Clock and Data Distribution
- Networking and Communications
- High End Computing
- Wireless and Wired Infrastructure

End Products

- Servers
- Ethernet Switch/Routers
- ATE
- Test and Measurement



ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM*

*For additional marking information, refer to Application Note AND8002/D.

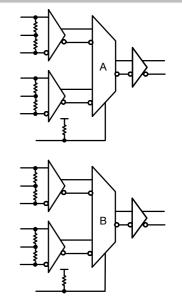


Figure 1. Simplified Logic Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

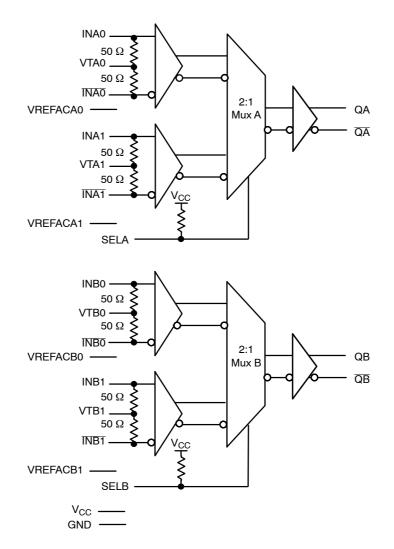
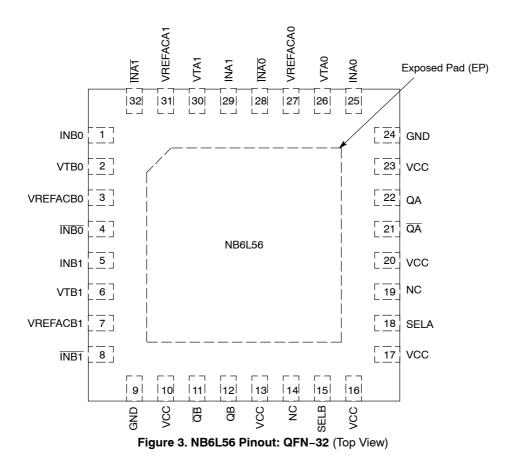



Figure 2. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Pin Description	
1, 4 5, 8 25, 28 29, 32	INB0, <u>INB0</u> INB1, <u>INB1</u> INA0, I <u>NA0</u> INA1, INA1	LVPECL, CML, LVDS Input	Noninverted, Inverted Differential Input pairs (Note 1). Default state is indeterminate if left floating open. Do not connect unused input pairs with one input connected to VCC and the complementary input to GND. For differential and single ended interface, see "Interface Applications".	
2, 6 26, 30	VTB0, VTB1 VTA0, VTA1		Internal 100 Ω Center-tapped Termination Pin for Differential Input pairs (Figure 4)	
3 7 27 31	VREFACB0 VREFACB1 VREFACA0 VREFACA1	_	Output Voltage Reference for Capacitor-Coupled Inputs or Single Ended Interface (see "Interface Applications")	
15 18	SELB SELA	LVTTL / LVCMOS Input	Input Select pin; LOW for IN0 Inputs, HIGH for IN1 Inputs; defaults HIC when left open	
14, 19	NC	-	No Connect	
10, 13,16,17 20, 23	VCC	Power	Positive Supply Voltage. All VCC pins must be connected to the positive power supply for correct DC and AC operation.	
11, 12 21, 22	<u>qb</u> , qb qa, qa	LVPECL Output	Inverted, Non-inverted Differential Outputs Note 1.	
9, 24	GND	Ground	Negative Supply Voltage, connected to Ground	
-	EP	-	The Exposed Pad (EP) on the package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is connected to the die and must only be connected electrically to GND on the PC board.	

If no signal is applied on any INxn input pair, the device will be susceptible to self-oscillation.
 All V_{CC} and GND pins must be externally connected to a power supply for proper operation.

Table 2. INPUT SELECT FUNCTION TABLE

SELA/SELB	Q	Q
L	INx0	ĪNx0
Н	INx1	INx1

Table 3. ATTRIBUTES

Characteri	Value	
ESD Protection Human Body Model Machine Model		>2 kV 200 V
Input Pullup resistor (R _{PU})	75 kΩ	
Moisture Sensitivity (Note 3)	QFN32	Level 1
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	1023	
Meets or exceeds JEDEC Spec El/		

3. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 4)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		4.0	V
VINPP	Differential Input Voltage INx - ĪNx			1.89	V
I _{IN}	Input Current Through RT (50 Ω Resistor)			±40	mA
I _{OUT}	Output Current	Continuous Surge		±50 ±100	mA
IVREFAC	VREFAC Sink/Source Current			±1.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 4)	0 lfpm 500 lfpm	QFN - 32 QFN - 32	31 27	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case) (Note 4)	Standard Board	QFN-32	12	°C/W
ΨJC	Thermal Resistance (Junction-to-Board)			16	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

4. JEDEC standard 51-6, multilayer board - 2S2P (2 signal, 2 power) with eight filled thermal vias under exposed pad.

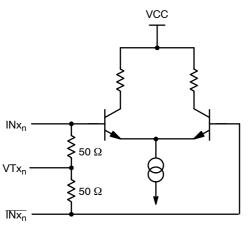
Symbol	Characteristic	Min	Тур	Max	Unit
I _{CC}	Power Supply Current (Inputs and Outputs Open)		65	85	mA
LVPECL OL	ITPUTS				
V _{OH}	Output HIGH Voltage	V _{CC} – 1.145		V _{CC} - 0.895	mV
V _{OL}	Output LOW Voltage	V _{CC} - 2.000		V _{CC} – 1.695	mV
V _{OUT}	Output Swing (Single Ended) Output Swing (Differential)	400 800	800 1600		mV
DIFFERENT	TAL INPUT DRIVEN SINGLE-ENDED (Note 6) (Figures 5 and 6)				
V _{th}	Input Threshold Reference Voltage Range	1125		V _{CC} – 75	mV
V _{IH}	Single-ended Input HIGH Voltage	V _{th} + 75		V _{CC}	mV
V _{IL}	Single-ended Input LOW Voltage	GND		V _{th} – 75	mV
VISE	Single-ended Input Voltage (V _{IH} - V _{IL}) (Note 6)	150		3015	mV
DIFFERENT	TIAL INPUTS DRIVEN DIFFERENTIALLY (Note 7) (Figures 7 and 8)				
V _{IHD}	Differential Input HIGH Voltage	1200		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage	GND		V _{IHD} – 100	mV
V _{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	100		1890	mV
V _{CMR}	Input Common Mode Range (Differential Configuration) (Figure 9)	1150		V _{CC} – 50	mV
I _{IH}	Input HIGH Current (VTnx Open)	-150		150	μA
Ι _{ΙL}	Input LOW Current (VTnx Open)	-150		150	μA
LVTTL / LVC	CMOS INPUTS (SELA/SELB)				
VIH	Input HIGH Voltage	2.0			V
V _{IL}	Input LOW Voltage			0.8	V
Ι _{ΙL}	Input LOW Current (V _{IN} = 0.5 V)	-300			μA
I _{IH}	Input HIGH Current (V _{CC})			75	μA
TERMINATI	ON RESISTORS				
R _{TIN}	Internal Input Termination Resistor INxn/INxn to VTxn	45	50	55	Ω
REFERENC	E VOLTAGE				
VREF-AC	Output Reference Voltage	V _{CC} – 1.35	V _{CC} – 1.2	V _{CC} – 1.1	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

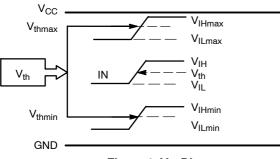
5. Outputs evaluated with 50 Ω resistors to V_{TT} = V_{CC} – 2.0 V for proper operation (See Figure 16). 6. VTH is applied to the complementary input when operating in single–ended mode. VIH, VIL and VTH parameters must be complied with simultaneously.

7. VIHD, VILD and VCMR parameters must be complied with simultaneously. VCMR max varies 1:1 with V_{CC}.

Symbol	Characteristic	Min	Тур	Max	Unit
f _{MAX}	$ \begin{array}{ll} \mbox{Maximum Input Clock Frequency} & V_{outpp} \geq 400 \mbox{ mV} \\ \mbox{Maximum Operating Data Rate (NRZ)} & V_{outpp} \geq 400 \mbox{ mV} \\ \end{array} $	2.5 2.5			Ghz Gbps
fSEL	Maximum Toggle Frequency, SELA/SELB	25	50		MHz
V _{OUTPP}	Output Voltage Amplitude (Differential Interconnect) $f_{in} \leq$ 2.5 GHz	400			mVpp
t _{PLH} , t _{PHL}	Propagation Delay to Differential Outputs, @ 1 GHz, INxn/INxn to Qx, Qx SELx to Qx, Qx	160 100	250 260	360 400	ps
t _{PLH} Tempco	Differential Propagation Delay Temperature Coefficient		143		∆fs/°C
tskew	Input to Input per Bank Within Device Output Bank to Output Bank Within Device		10 12	20 25	ps
UITTER	DATA JITTER R _J for K28.7 at 2.5 GHz (RMS) D _J for NRZ PRBS23 / K28.5 at 2.5 Gbps CLOCK JITTER Cycle to Cycle (1K WFMS; RMS) Total Jitter TJ (PP)			1 10 1 10	ps
tjit(φ)	Integrated Phase Jitter fin = 155.52 MHz and 1GHz 12 kHz $-$ 20 MHz Offset (RMS)		35		fs
t _{JITTER}	Crosstalk Induced Jitter Input to Input per Output Bank Within Device (Note 9)			0.7	psRMS
V _{INPP}	Input Voltage Swing (Differential Configuration) (Note 10)	100		1200	mV
t _{r,} , t _f	Output Rise/Fall Times @ 1 GHz (20% – 80%), Q _x , Q _x	50	100	180	ps


Table 6. AC CHARACTERISTICS V_{CC} = $2.5 \pm 5\%$ (2.375 V to 2.625 V); V_{CC} = $3.3 \pm 10\%$ (3.0 V to 3.6 V) (Note 8)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.


Differential 50% duty cycle at V_{INPPmin} clock source. Outputs evaluated with 50 Ω resistors to V_{TT} = V_{CC} – 2.0 V (See Figure 16). Input crosspoint to output crosspoint for INxn/INxn to Qx, Qx; 50% input to output crosspoint for SELx to Qx, Qx. See Figures 5, 10 and 11.

9. Crosstalk is measured at the output while applying two similar clock frequencies that are asynchronous with respect to each other at the inputs.

10. Input voltage swing is a single-ended measurement operating in differential mode.

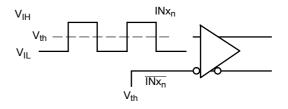
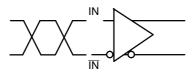
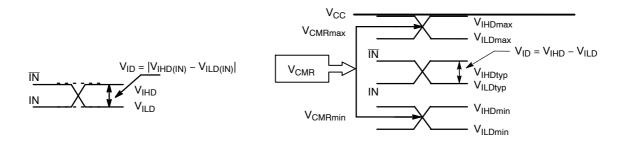
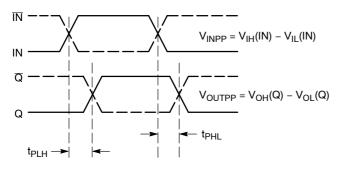




Figure 5. Differential Input Driven Single-Ended



GND

Figure 8. Differential Inputs Driven Differentially

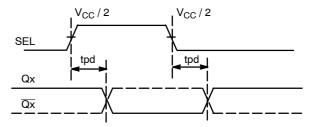


Figure 11. SEL to Qx Timing Diagram

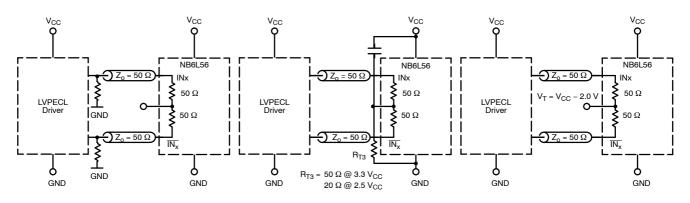
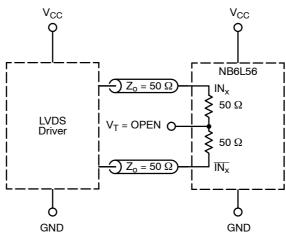
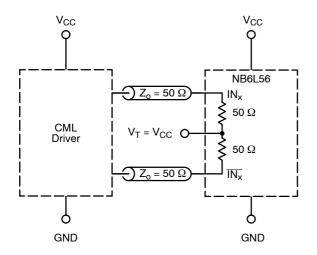




Figure 12. Typical LVPECL Interface (see AND8020)

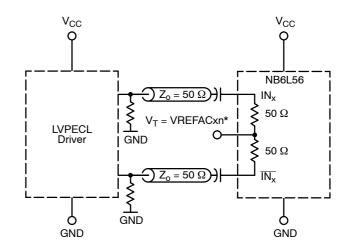
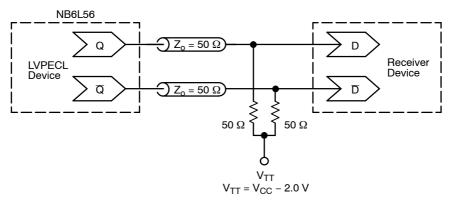
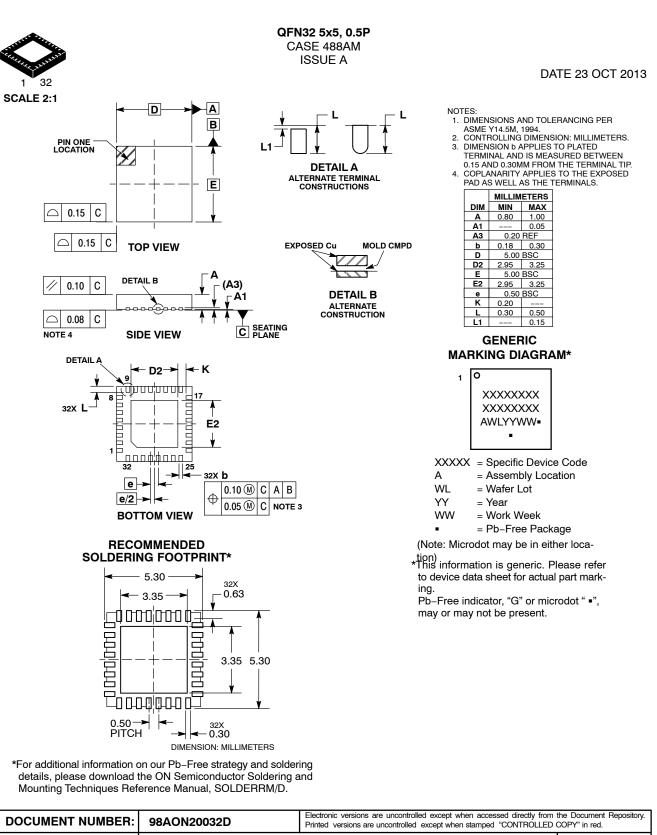


Figure 15. Typical LVPECL Capacitor–Coupled Differential Interface (V_T Connected to V_{REFAC}) *VREFAC bypassed to ground with a 0.01 μF capacitor.




Figure 16. Typical Termination for LVPECL Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]
NB6L56MNG	QFN32 (Pb-Free)	74 Units / Rail
NB6L56MNTXG	QFN32 (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

DESCRIPTION:

QFN32 5x5 0.5P

PAGE 1 OF 1