2.5V / 3.3V Differential 4:1 Mux Input to 1:2 LVPECL Clock/Data Fanout / Translator

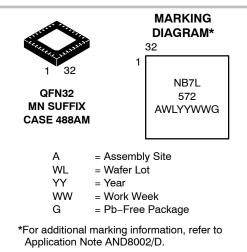
Multi-Level Inputs w/ Internal Termination

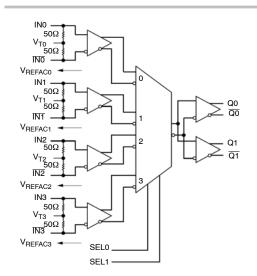
The NB7L572 is a high performance differential 4:1 Clock/Data input multiplexer and a 1:2 LVPECL Clock/Data fanout buffer. The INx/INx inputs includes internal 50 Ω termination resistors and will accept differential LVPECL, CML, or LVDS logic levels. The NB7L572 incorporates a pair of Select pins that will choose one of four differential inputs and will produce two identical LVPECL output copies of Clock or Data operating up to 7 GHz or 10 Gb/s, respectively. As such, NB7L572 is ideal for SONET, GigE, Fiber Channel, Backplane and other Clock/Data distribution applications.

The NB7L572 INx/INx inputs, outputs and core logic are powered by a 2.5 V \pm 5% V or 3.3 V \pm 10% power supply. The two differential LVPECL outputs will swing 750 mV when externally terminated with a 50 Ω resistor to V_{CC} – 2 V, and are optimized for low skew and minimal jitter.

The NB7L572 is offered in a low profile 5x5 mm 32-pin QFN Pb-free package. Application notes, models, and support documentation are available at www.onsemi.com.

The NB7L572 is a member of the GigaComm[™] family of high performance clock products.


Features


- Input Data Rate > 10.7 Gb/s Typical
- Data Dependent Jitter < 15 ps
- Maximum Input Clock Frequency > 7 GHz Typical
- Random Clock Jitter < 0.8 ps RMS
- Low Skew 1:2 LVPECL Outputs, < 15 ps max
- 4:1 Multi-Level Mux Inputs, Accepts LVPECL, CML LVDS
- 150 ps Typical Propagation Delay
- 45 ps Typical Rise and Fall Times
- Differential LVPECL Outputs, 750 mV Peak-to-Peak, Typical
- Operating Range: $V_{CC} = 2.375$ V to 3.6 V
- Internal 50 Ω Input Termination Resistors
- V_{REFAC} Reference Output
- -40°C to +85°C Ambient Operating Temperature
- These are Pb-Free Devices

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

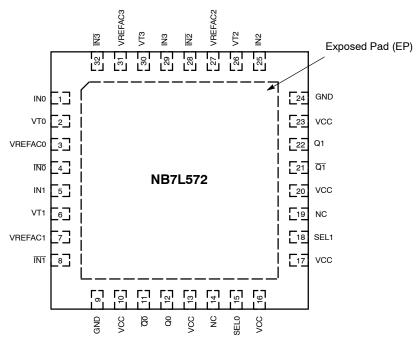


Figure 1. Pinout Configuration (Top View)

Table 1. INPUT SELECT FUNCTION TABLE

SEL1*	SEL0*	Clock / Data Input Selected	
0	0	IN0 Input Selected	
0	1	IN1 Input Selected	
1	0	IN2 Input Selected	
1	1	IN3 Input Selected	

*Defaults HIGH when left open.

Table 2. PIN DESCRIPTION

Pin	Name	I/O	Description	
1, 4 5, 8 25, 28 29, 32	IN0, <u>IN0</u> IN1, <u>IN1</u> IN2, <u>IN2</u> IN3, IN3	LVPECL, CML, LVDS Input	Non-inverted, Inverted, Differential Clock or Data Inputs.	
2, 6 26, 30	VT0, VT1 VT2, VT3		Internal 100 Ω Center-tapped Termination Pin for INx / $\overline{\text{INx}}$	
15 18	SEL0 SEL1	LVTTL/LVCMOS Input	Input Select pins, default HIGH when left open through a 28k– Ω pull–up resistor. Input logic threshold is V _{CC} /2. See Select Function, Table 1.	
14, 19	NC	-	No Connect	
10, 13, 16 17, 20, 23	VCC	-	Positive Supply Voltage. All V_{CC} pins must be connected to the positive power supply for correct DC and AC operation.	
11, 12 21, 22	00, Q0 01, Q1	LVPECL Output	Inverted, Non-inverted Differential Outputs.	
9, 24	GND		Negative Supply Voltage, connected to Ground	
3 7 27 31	VREFAC0 VREFAC1 VREFAC2 VREFAC3	_	Output Voltage Reference for Capacitor-Coupled Inputs	
_	EP	-	The Exposed Pad (EP) on the QFN–32 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat–sinking conduit. The pad is electrically connected to the die, and must be electrically connected to GND.	

In the differential configuration when the input termination pins (VT0, VT1, VT2, VT3) are connected to a common termination voltage or left open, and if no signal is applied on INx / INx input, then the device will be susceptible to self-oscillation.
All VCC, and GND pins must be externally connected to a power supply for proper operation.

Table 3. ATTRIBUTES

Characteris	Value	
ESD Protection	Human Body Model Machine Model	> 4 kV > 150 V
Input Pullup Resistor (R _{PU})	28 kΩ	
Moisture Sensitivity (Note 3)	Level 1	
Flammability Rating Oxygen Index: 2	UL 94 V-0 @ 0.125 in	
Transistor Count	205	
Meets or exceeds JEDEC Spec EIA		

3. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		-0.5 to +4.0	V
V _{IN}	Positive Input Voltage	GND = 0 V		–0.5 to V _{CC} +0.5	V
V _{INPP}	Differential Input Voltage IN – IN			1.89	V
l _{out}	LVPECL Output Current	Continuous Surge		50 100	mA mA
I _{IN}	Input Current Through RT (50 Ω Resistor)			±40	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 4)	0 lfpm 500 lfpm	QFN-32 QFN-32	31 27	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case) (Note 4)		QFN-32	12	°C/W
T _{sol}	Wave Solder	\leq 20 sec		265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

4. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS POSITIVE LVPECL OUTPUT V_{CC} = 2.375 V to 3.6 V, GND = 0 V, TA = -40° C to $+85^{\circ}$ C (Nata C)

(Note 6)					
Symbol	Characteristic	Min	Тур	Max	Unit
POWER	SUPPLY				
V _{CC}	Power Supply Voltage $V_{CC} = 2.5V$ $V_{CC} = 3.3 V$	2.375 3.0	2.5 3.3	2.625 3.6	V
I _{CC}	Power Supply Current for V_{CC} (Inputs and Outputs Open)		90	110	mA
LVPECL	OUTPUTS				
V _{OH}	Output HIGH Voltage (Note 6) $ \begin{array}{c} V_{CC} = 2.5 \ V \\ V_{CC} = 3.3 \ V \end{array} $	V _{CC} – 1145 1355 2155	V _{CC} – 900 1600 2400	V _{CC} – 825 1675 2475	mV
V _{OL}	Output LOW Voltage (Note 6) $ \begin{array}{c} V_{CC} = 2.5 \ V \\ V_{CC} = 3.3 \ V \end{array} $	V _{CC} – 2000 500 1300	V _{CC} – 1700 800 1600	V _{CC} – 1500 1000 1800	mV
DIFFERE	INTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Figures 4 & 6) (Not	te 7)			
V _{IH}	Single-Ended Input HIGH Voltage	V _{th} + 100		V _{CC}	mV
V _{IL}	Single-Ended Input LOW Voltage	GND		$V_{th} - 100$	mV
V _{th}	Input Threshold Reference Voltage Range (Note 8)	1100		V _{CC} - 100	mV
V _{ISE}	Single-Ended Input Voltage (V _{IH} - V _{IL})	200		2400	mV
VREFAC					
V _{REF-AC}	Output Reference Voltage (100 µA Load)	V _{CC} – 1500	V _{CC} - 1200	V _{CC} - 1000	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 5 & 7) (Note 9)				
V _{IHD}	Differential Input HIGH Voltage (IN, ĪN)	1200		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage (IN, IN)	0		V _{IHD} – 100	mV
V _{ID}	Differential Input Voltage (IN, IN) (V _{IHD} – V _{ILD})	100		1200	mV
V _{CMR}	Input Common Mode Range (Differential Configuration, Note 10) (Figure 8)	800		V _{CC} – 50	mV
I _{IH}	Input HIGH Current IN/IN (VT IN/VT IN Open)	-150		150	μA
IIL	Input LOW Current IN/IN (VT IN/VT IN Open)	-150		150	μA
CONTRO	DL INPUT (SELx Pin)				
V _{IH}	Input HIGH Voltage for Control Pin	2.0		V _{CC}	V
V _{IL}	Input LOW Voltage for Control Pin	GND		0.8	V
I _{IH}	Input HIGH Current			40	μA
IIL	Input LOW Current	-215		0	μA
TERMIN	ATION RESISTORS	-	-	-	-
R _{TIN}	Internal Input Termination Resistor (Measured from INx to VTx)	45	50	55	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Input and Output parameters vary 1:1 with V_{CC}. 6. LVPECL outputs loaded with 50 Ω to V_{CC} – 2V for proper operation. 7. Vth, V_{IH}, V_{IL}, and V_{ISE} parameters must be complied with simultaneously. 8. Vth is applied to the complementary input when operating in single–ended mode.

9. V_{IHD} , V_{ILD} , V_{ID} and V_{CMR} parameters must be complied with simultaneously. 10. V_{CMR} min varies 1:1 with GND, V_{CMR} max varies 1:1 with V_{CC} . The V_{CMR} range is referenced to the most positive side of the differential input signal.

Symbol	Characteristic			Тур	Max	Unit
f _{MAX}	Maximum Input Clock Frequency $V_{OUT} \ge 400 \text{ mV}$			8		GHz
f _{DATAMAX}	Maximum Operating Data Rate NRZ, (PRBS23)	10	11		Gbps
V _{OUTPP}	$ \begin{array}{ll} Output \mbox{ Voltage Amplitude (@ V_{INPPmin}) (Figure 2 \& 9) } & f_{in} \leq 5 \mbox{ GHz} \\ (Note 12) & f_{in} \leq 7 \mbox{ GHz} \end{array} $		550 400	750 500		mV
t _{PLH} , t _{PHL}	Propagation Delay to Differential Outputs Measured at Differential Cross-Point	@ 1 GHz INx/INx to Qx/Qx (Figure 9) @ 50 MHz SELx to Qx (Figure 10)	125 300	150	175 1000	ps
t _{PD Tempco}	Differential Propagation Delay Temperature Coefficient			115		fs/°C
t _{skew}	Output – Output skew (within device) (Note 13) Device – Device skew (tpd max – tpd min)			0	10 50	ps
t _{DC}	Output Clock Duty Cycle (Reference Duty Cycle = 50%)		45	50	55	%
^t JITTER	$\begin{array}{ll} \mbox{Additive Random Clock Jitter, RJ(RMS) (Note 14)} & f_{in} \leq 7.0 \mbox{ GHz} \\ \mbox{Data Dependent Jitter, DDJ (Note 15)} & f_{in} \leq 10 \mbox{ Gbps} \end{array}$			0.5 6	0.8 15	ps rms ps pk–pk
V _{INPP}	Input Voltage Swing (Differential Configuration) (Note 16)		100		1200	mV
t _{r,} , t _f	Output Rise/Fall Times @ 1 GHz; (20% – 80%), V_{IN} = 800 mV Q, \overline{Q}		25	45	65	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

11. Measured using a 100 mVpk-pk source, 50% duty cycle clock source. All output loading with external 50 Ω to V_{CC} – 2 V. Input edge rates 40 ps (20% – 80%).

12. Output voltage swing is a single-ended measurement operating in differential mode.

13. Skew is measured between outputs under identical transitions and conditions. Duty cycle skew is defined only for differential operation when the delays are measured from cross-point of the inputs to the cross-point of the outputs.

14. Additive RMS jitter with 50% duty cycle clock signal.

15. Additive Peak-to-Peak data dependent jitter with input NRZ data at K28.5.

16. Input voltage swing is a single-ended measurement operating in differential mode.

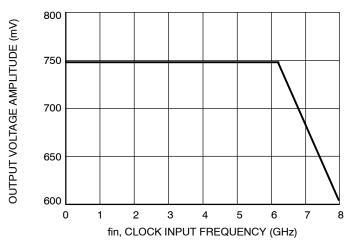
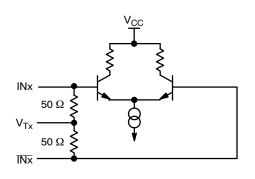
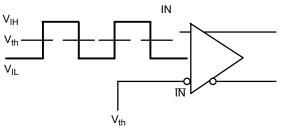
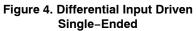
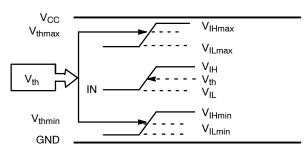
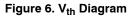
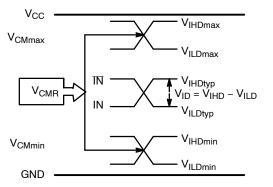
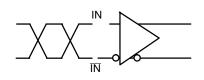
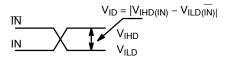


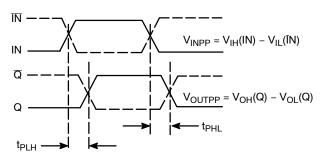
Figure 2. CLOCK Output Voltage Amplitude (V_{OUTPP}) / RMS Jitter vs. Input Frequency (f_{in}) at Ambient Temperature (typical)


Figure 3. Input Structure







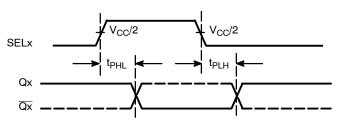


Figure 10. SELx to Qx Timing Diagram

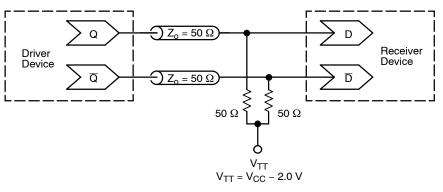
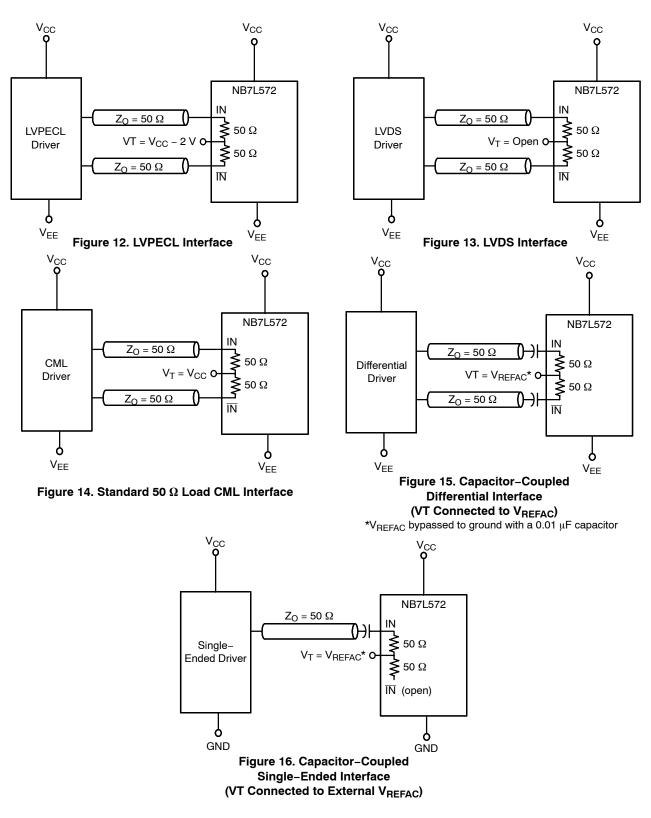
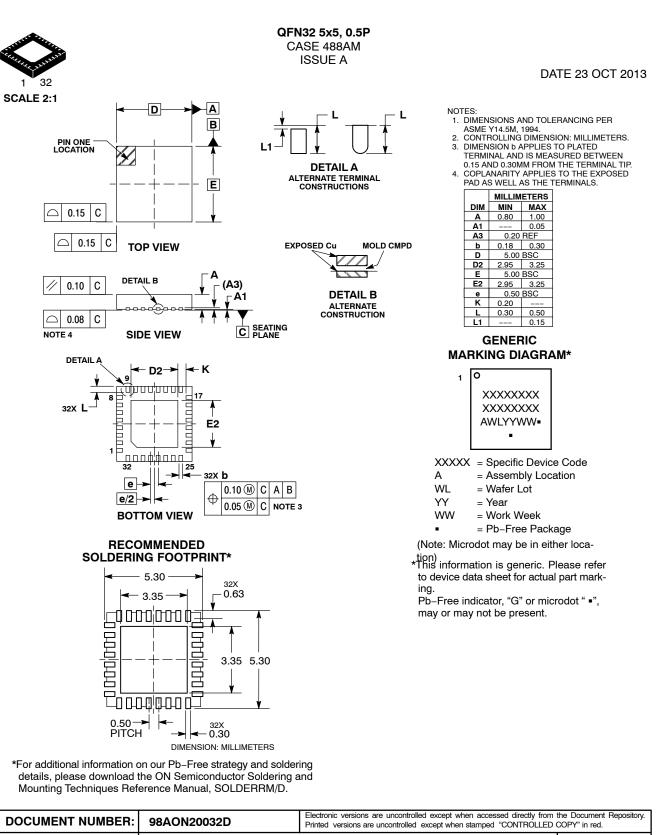



Figure 11. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)



ORDERING INFORMATION

Device	Package	Shipping [†]
NB7L572MNG	QFN32 (Pb-Free)	79 Units / Rail
NB7L572MNR4G	QFN32 (Pb-Free)	1000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

DESCRIPTION:

QFN32 5x5 0.5P

PAGE 1 OF 1