# TinyLogic HST 2-Input NAND Gate

# NC7ST00

#### **Description**

The NC7ST00 is a single 2–Input high performance CMOS NAND Gate, with TTL–compatible inputs. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation. ESD protection diodes inherently guard both inputs and output with respect to the  $V_{\rm CC}$  and GND rails. High gain circuitry offers high noise immunity and reduced sensitivity to input edge rate. The TTL–compatible inputs facilitate TTL to NMOS / CMOS interfacing. Device performance is similar to MM74HCT but with 1/2 the output current drive of HC / HCT.

#### **Features**

- Space Saving SC-74A and SC-88A 5-Lead Package
- Ultra Small MicroPak<sup>TM</sup> Leadless Package
- High Speed:  $t_{PD} < 7$  ns Typ,  $V_{CC} = 5$  V,  $C_L = 15$  pF
- Low Quiescent Power:  $I_{CC} < 1 \mu A$  Typ,  $V_{CC} = 5.5 V$
- Balanced Output Drive: 2 mA I<sub>OL</sub>, -2 mA I<sub>OH</sub>
- TTL-compatible Inputs
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

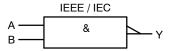



Figure 1. Logic Symbol



#### ON Semiconductor®

www.onsemi.com











SC-74A CASE 318BQ





1

SC-88A CASE 419A-02



E3, 8S00, T00 = Specific Device Code

KK = 2-Digit Lot Run Traceability Code XY = 2-Digit Date Code Format

Z = Assembly Plant Code
M = Date Code
Pb-Free Package

(Note: Microdot may be in either location)

#### ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 4 of this data sheet.

#### NC7ST00

## **Pin Configurations**

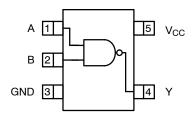



Figure 2. SC-88A and SC-74A (Top View)



Figure 3. MicroPak (Top Through View)

#### **PIN DESCRIPTIONS**

| Pin Names | Description |
|-----------|-------------|
| A, B      | Inputs      |
| Y         | Output      |
| NC        | No Connect  |

### **FUNCTION TABLE** $(Y = \overline{AB})$

| Inp | Output |   |
|-----|--------|---|
| Α   | В      | Υ |
| L   | L      | Н |
| L   | Н      | Н |
| Н   | L      | Н |
| Н   | Н      | L |

H = HIGH Logic Level L = LOW Logic Level

### **ABSOLUTE MAXIMUM RATINGS**

| Symbol                              | Parame                                         | Parameter                          |      | Max                   | Unit |
|-------------------------------------|------------------------------------------------|------------------------------------|------|-----------------------|------|
| V <sub>CC</sub>                     | Supply Voltage                                 |                                    | -0.5 | 6.5                   | V    |
| I <sub>IK</sub>                     | DC Input Diode Current                         | V <sub>IN</sub> < 0 V              | -    | -20                   | mA   |
|                                     |                                                | V <sub>IN</sub> > V <sub>CC</sub>  | -    | +20                   |      |
| V <sub>IN</sub>                     | DC Input Voltage                               |                                    | -0.5 | V <sub>CC</sub> + 0.5 | V    |
| l <sub>ok</sub>                     | DC Output Diode Current V <sub>OUT</sub> < 0 V |                                    | -    | -20                   | mA   |
|                                     |                                                | V <sub>OUT</sub> > V <sub>CC</sub> | -    | +20                   |      |
| V <sub>OUT</sub>                    | Output Voltage                                 |                                    | -0.5 | V <sub>CC</sub> + 0.5 | V    |
| l <sub>OUT</sub>                    | DC Output Source or Sink Current               |                                    | -    | ±12.5                 | mA   |
| I <sub>CC</sub> or I <sub>GND</sub> | DC V <sub>CC</sub> or Ground Current per Su    | pply Pin                           | -    | ±25                   | mA   |
| T <sub>STG</sub>                    | Storage Temperature                            |                                    | -65  | +150                  | °C   |
| TJ                                  | Junction Temperature                           |                                    | -    | +150                  | °C   |
| $T_L$                               | Lead Temperature (Soldering, 10 Seconds)       |                                    | -    | +260                  | °C   |
| $P_{D}$                             | Power Dissipation in Still Air                 | SC-74A                             | -    | 390                   | mW   |
|                                     |                                                | SC-88A                             | -    | 332                   |      |
|                                     |                                                | MicroPak-6                         | -    | 812                   | 7    |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

#### NC7ST00

#### **RECOMMENDED OPERATING CONDITIONS**

| Symbol                          | Parameter                | Conditions              | Min | Max             | Unit |
|---------------------------------|--------------------------|-------------------------|-----|-----------------|------|
| V <sub>CC</sub>                 | Supply Voltage           |                         | 4.5 | 5.5             | V    |
| V <sub>IN</sub>                 | Input Voltage            |                         | 0   | V <sub>CC</sub> | V    |
| V <sub>OUT</sub>                | Output Voltage           |                         | 0   | V <sub>CC</sub> | V    |
| T <sub>A</sub>                  | Operating Temperature    |                         | -40 | +85             | °C   |
| t <sub>r</sub> , t <sub>f</sub> | Input Rise and Fall Time | V <sub>CC</sub> = 5.0 V | 0   | 10              | ns/V |
| $\theta_{\sf JA}$               | Thermal Resistance       | SC-74A                  | -   | 320             | °C/W |
|                                 |                          | SC-88A                  | -   | 377             |      |
|                                 |                          | MicroPak-6              | -   | 154             |      |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

#### DC ELECTICAL CHARACTERISTICS

|                  |                           |                     |                                                                                                                                | -           | Γ <sub>A</sub> = +25°C | ;           | T <sub>A</sub> = -40 | to +85°C    |      |
|------------------|---------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|-------------|----------------------|-------------|------|
| Symbol           | Parameter                 | V <sub>CC</sub> (V) | Conditions                                                                                                                     | Min         | Тур                    | Max         | Min                  | Max         | Unit |
| V <sub>IH</sub>  | HIGH Level Input Voltage  | 4.5 – 5.5           |                                                                                                                                | 2.0         | -                      | -           | 2.0                  | -           | V    |
| V <sub>IL</sub>  | LOW Level Input Voltage   | 4.5 – 5.5           |                                                                                                                                | -           | _                      | 0.8         | _                    | 0.8         | V    |
| V <sub>OH</sub>  | HIGH Level Output Voltage | 4.5<br>4.5          | $\begin{split} I_{OH} &= -20 \ \mu\text{A} \\ I_{OH} &= -2 \ \text{mA} \\ V_{IN} &= V_{IH} \ \text{or} \ V_{IL} \end{split}$   | 4.4<br>4.18 | 4.5<br>4.35            | -           | 4.4<br>4.13          | -           | V    |
| V <sub>OL</sub>  | LOW Level Output Voltage  | 4.5<br>4.5          | $\begin{split} I_{OL} &= 20 \; \mu\text{A} \\ I_{OL} &= 2 \; \text{mA} \\ V_{IN} &= V_{IH} \; \text{or} \; V_{IL} \end{split}$ | -           | 0<br>0.10              | 0.1<br>0.26 | -                    | 0.1<br>0.33 | ٧    |
| I <sub>IN</sub>  | Input Leakage Current     | 5.5                 | $0 \leq V_{IN} \leq 5.5 \text{ V}$                                                                                             | -           | -                      | ±0.1        | _                    | ±1.0        | μΑ   |
| Icc              | Quiescent Supply Current  | 5.5                 | V <sub>IN</sub> = V <sub>CC</sub> or GND                                                                                       | -           | _                      | 1.0         | _                    | 10.0        | μΑ   |
| I <sub>CCT</sub> | I <sub>CC</sub> per Input | 5.5                 | One Input $V_{IN}$ = 0.5 V or 2.4 V, Other Input $V_{CC}$ or GND                                                               | . 1         | ı                      | 2.0         | -                    | 2.9         | mA   |

#### **AC ELECTRICAL CHARACTERISTICS**


|                                     |                                          |                     |                        | T <sub>A</sub> = +25°C |      |     | T <sub>A</sub> = -40 to +85°C |     |      |
|-------------------------------------|------------------------------------------|---------------------|------------------------|------------------------|------|-----|-------------------------------|-----|------|
| Symbol                              | Parameter                                | V <sub>CC</sub> (V) | Conditions             | Min                    | Тур  | Max | Min                           | Max | Unit |
| t <sub>PLH</sub> , t <sub>PHL</sub> | Propagation Delay (Figure 4, 6)          | 5.0                 | C <sub>L</sub> = 15 pF | _                      | 3.4  | 12  | -                             | -   | ns   |
|                                     |                                          |                     |                        | _                      | 6.3  | 17  | -                             | _   |      |
|                                     |                                          | 4.5                 | C <sub>L</sub> = 50 pF | -                      | 6.0  | 16  | -                             | 20  |      |
|                                     |                                          |                     |                        | -                      | 11.5 | 27  | -                             | 31  |      |
|                                     |                                          | 5.5                 |                        | -                      | 4.1  | 14  | -                             | 18  |      |
|                                     |                                          |                     |                        | -                      | 11.2 | 26  | -                             | 30  |      |
| t <sub>TLH</sub> , t <sub>THL</sub> | Output Transition Time                   | 5.0                 | C <sub>L</sub> = 15 pF | -                      | 4    | 10  | -                             | -   | ns   |
|                                     | (Figure 4, 6)                            | 4.5                 | C <sub>L</sub> = 50 pF | _                      | 11   | 25  | -                             | 31  |      |
|                                     |                                          | 5.5                 |                        | -                      | 10   | 21  | -                             | 26  |      |
| C <sub>IN</sub>                     | Input Capacitance                        | Open                |                        | -                      | 2    | 10  | -                             | -   | pF   |
| $C_{PD}$                            | Power Dissipation Capacitance (Figure 5) | 5.0                 | (Note 2)               | _                      | 6    | _   | -                             | _   | pF   |

<sup>2.</sup> C<sub>PD</sub> is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current. Current consumption (I<sub>CCD</sub>) at no output loading and operating at 50% duty cycle. (See Figure 5). C<sub>PD</sub> is related to I<sub>CCD</sub> dynamic operating current by the expression: I<sub>CCD</sub> = (C<sub>PD</sub>) (V<sub>CC</sub>) (f<sub>IN</sub>) + (I<sub>CCstatic</sub>).

<sup>1.</sup> Unused inputs must be held HIGH or LOW. They may not float.

#### NC7ST00

#### **AC Loading and Waveforms**



 $C_L$  includes load and stray capacitance Input PRR = 1.0 MHz,  $t_W = 500 \ \text{ns}$ 

Figure 4. AC Test Circuit

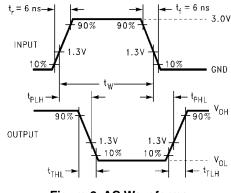
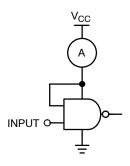
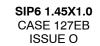




Figure 6. AC Waveforms

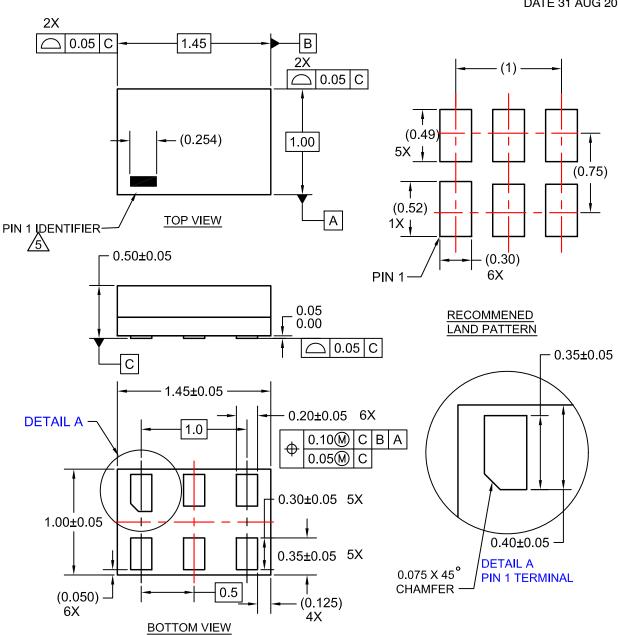


Input = AC Waveform;

PRR = Variable; Duty Cycle = 50%.


Figure 5. I<sub>CCD</sub> Test Circuit

#### **ORDERING INFORMATION**


| Device     | Top Mark | Packages       | Shipping <sup>†</sup> |
|------------|----------|----------------|-----------------------|
| NC7ST00M5X | 8S00     | SC-74A         | 3000 / Tape & Reel    |
| NC7ST00P5X | T00      | SC-88A         | 3000 / Tape & Reel    |
| NC7ST00L6X | E3       | SIP6, MicroPak | 5000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

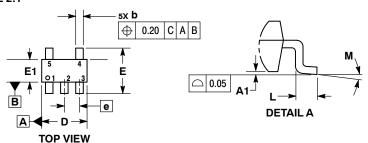
MicroPak is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

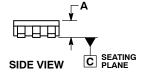


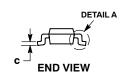
**DATE 31 AUG 2016** 



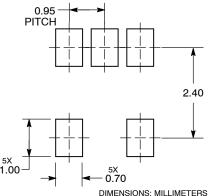
NOTES:


- 1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-2009
  4. PIN ONE IDENTIFIER IS 2X LENGTH OF ANY
  - OTHER LINE IN THE MARK CODE LAYOUT.


| DOCUMENT NUMBER: | 98AON13590G   | Electronic versions are uncontrolled except when accessed directly from the Document Repo<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |
|------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| DESCRIPTION:     | SIP6 1.45X1.0 |                                                                                                                                                                              | PAGE 1 OF 1 |  |  |


ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.




**DATE 18 JAN 2018** 











\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### NOTES:

- IES:
  DIMENSIONING AND TOLERANCING PER ASME
  Y14.5M, 1994.
  CONTROLLING DIMENSION: MILLIMETERS.
  MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
  THICKNESS. MINIMUM LEAD THICKNESS IS THE
  MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

|     | MILLIMETERS |      |  |  |
|-----|-------------|------|--|--|
| DIM | MIN         | MAX  |  |  |
| Α   | 0.90        | 1.10 |  |  |
| A1  | 0.01        | 0.10 |  |  |
| b   | 0.25        | 0.50 |  |  |
| С   | 0.10        | 0.26 |  |  |
| D   | 2.85        | 3.15 |  |  |
| E   | 2.50        | 3.00 |  |  |
| E1  | 1.35        | 1.65 |  |  |
| е   | 0.95 BSC    |      |  |  |
| L   | 0.20        | 0.60 |  |  |
| М   | 0°          | 10°  |  |  |

#### **GENERIC MARKING DIAGRAM\***



XXX = Specific Device Code

Μ = Date Code = Pb-Free Package

(Note: Microdot may be in either location)

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON66279G | Electronic versions are uncontrolled except when accessed directly from the Document Rep<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SC-74A      |                                                                                                                                                                             | PAGE 1 OF 1 |  |

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



#### SC-88A (SC-70-5/SOT-353) CASE 419A-02 **ISSUE L**

**DATE 17 JAN 2013** 



- TIES:
  DIMENSIONING AND TOLERANCING
  PER ANSI Y14.5M, 1982.
  CONTROLLING DIMENSION: INCH.
  419A-01 OBSOLETE. NEW STANDARD 3.
- 419A-02.
  DIMENSIONS A AND B DO NOT INCLUDE
- MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

|     | INC                | INCHES MILLIMETERS |          | IETERS |
|-----|--------------------|--------------------|----------|--------|
| DIM | MIN                | MAX                | MIN      | MAX    |
| Α   | 0.071              | 0.087              | 1.80     | 2.20   |
| В   | 0.045              | 0.053              | 1.15     | 1.35   |
| С   | 0.031              | 0.043              | 0.80     | 1.10   |
| D   | 0.004              | 0.012              | 0.10     | 0.30   |
| G   | 0.026              | BSC                | 0.65 BSC |        |
| Н   |                    | 0.004              |          | 0.10   |
| J   | 0.004              | 0.010              | 0.10     | 0.25   |
| K   | 0.004              | 0.012              | 0.10     | 0.30   |
| N   | 0.008 REF 0.20 REF |                    | REF      |        |
| S   | 0.079              | 0.087              | 2.00     | 2.20   |

#### **GENERIC MARKING DIAGRAM\***



XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

# -B-S D 5 PL 0.2 (0.008) M B M **SOLDER FOOTPRINT**

| +++      |                      |            |                                                |
|----------|----------------------|------------|------------------------------------------------|
| 0.40     |                      |            | 0.65<br>0.025                                  |
|          | <u>1.9</u><br>0.0748 | SCALE 20:1 | $\left(\frac{\text{mm}}{\text{inches}}\right)$ |
| OT # F 4 | 07450                | 07.45.0    |                                                |

0.50 0.0197

| STYLE 1:     | STYLE 2:     | STYLE 3:       | STYLE 4:        | STYLE 5:        |
|--------------|--------------|----------------|-----------------|-----------------|
| PIN 1. BASE  | PIN 1. ANODE | PIN 1. ANODE 1 | PIN 1. SOURCE 1 | PIN 1. CATHODE  |
| 2. EMITTER   | 2. EMITTER   | 2. N/C         | 2. DRAIN 1/2    | 2. COMMON ANODE |
| 3. BASE      | 3. BASE      | 3. ANODE 2     | 3. SOURCE 1     | 3. CATHODE 2    |
| 4. COLLECTOR | 4. COLLECTOR | 4. CATHODE 2   | 4. GATE 1       | 4. CATHODE 3    |
| 4. COLLECTOR | 4. COLLECTOR | 4. CATHODE 2   | 4. GATE 1       | 4. CATHODE 3    |
| 5. COLLECTOR | 5. CATHODE   | 5. CATHODE 1   | 5. GATE 2       | 5. CATHODE 4    |

| J. GOLLLOTON                                                                        | 3. CATTODE                                                        | J. CATHODE I                                                   | J. GAIL 2                                                                  | J. CATTODE 4                                                                                                                                                |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE 1 | STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR | STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER | STYLE 9:<br>PIN 1. ANODE<br>2. CATHODE<br>3. ANODE<br>4. ANODE<br>5. ANODE | Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment. |

| DOCUMENT NUMBER: | 98ASB42984B              | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SC-88A (SC-70-5/SOT-353) |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.