TinyLogic UHS Dual 2-Input AND Gate # NC7WZ08 #### **Description** The NC7WZ08 is a dual 2-Input AND Gate from ON Semiconductor's Ultra High Speed Series of TinyLogic. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65 V to 5.5 V V_{CC} range. The inputs and output are high impedance when V_{CC} is 0 V. Inputs tolerate voltages up to 6.5 V independent of V_{CC} operating voltage. #### Features - Space Saving US8 Surface Mount Package - MicroPakTM Leadless Package - Ultra High Speed: t_{PD} 2.5 ns Typ. into 50 pF at 5 V V_{CC} - High Output Drive: ±24 mA at 3 V V_{CC} - Broad V_{CC} Operating Range: 1.65 V to 5.5 V - Matches the Performance of LCX when Operated at 3.3 V V_{CC} - Power Down High Impedance Inputs / Output - Overvoltage Tolerant Inputs Facilitate 5 V to 3 V Translation - Patented Noise / EMI Reduction Circuitry Implemented - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant Figure 1. Logic Symbol ## ON Semiconductor® www.onsemi.com ### MARKING DIAGRAMS UQFN8 1.6X1.6, 0.5P CASE 523AY US8 CASE 846AN X4, WZ08 = Specific Device Code KK = 2-Digit Lot Run Traceability Code XY = 2-Digit Date Code Format Z = Assembly Plant Code A = Assembly Site L = Wafer Lot Number YW = Assembly Start Week #### ORDERING INFORMATION See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet. ### **Connection Diagram** Figure 2. Connection Diagram (Top View) B₁ Figure 4. Pad Assignments for MicroPak (Top Thru View) AAA represents Product Code Top Mark - see ordering code NOTE: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram). Figure 3. Pin One Orientation Diagram ## **PIN DESCRIPTION** | Pin Names | Description | |---------------------------------|-------------| | A _n , B _n | Inputs | | Y _n | Output | ## **FUNCTION TABLE** (Y = AB) | Inp | Output | | |-----|--------|---| | Α | В | Υ | | L | L | L | | L | Н | L | | Н | L | L | | Н | Н | Н | H = HIGH Logic Level L = LOW Logic Level #### NC7WZ08 #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parame | Min | Max | Unit | | |------------------------------------|---|------------------------|------|------|----| | V _{CC} | Supply Voltage | Supply Voltage | | | V | | V _{IN} | DC Input Voltage | | -0.5 | 6.5 | V | | V _{OUT} | DC Output Voltage | | -0.5 | 6.5 | V | | I _{IK} | DC Input Diode Current | V _{IN} < 0 V | - | -50 | mA | | I _{OK} | DC Output Diode Current | V _{OUT} < 0 V | - | -50 | mA | | I _{OUT} | DC Output Current | - | ±50 | mA | | | I _{CC} / I _{GND} | DC V _{CC} / GND Current | - | ±100 | mA | | | T _{STG} | Storage Temperature | | -65 | +150 | °C | | TJ | Junction Temperature Under Bias | | - | 150 | °C | | TL | Junction Lead Temperature (Soldering, 10 Seconds) | | - | 260 | °C | | P_{D} | Power Dissipation in Still Air US8 | | - | 500 | mW | | | | MicroPak-8 | - | 539 | 1 | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | | Parameter | Min | Max | Unit | |---------------------------------|--------------------------------|---|------|-----------------|------| | V _{CC} | Supply Voltage Operating | | 1.65 | 5.5 | V | | | Supply Voltage Data Rete | ntion | 1.5 | 5.5 | | | V _{IN} | Input Voltage | | 0 | 5.5 | V | | V _{OUT} | Output Voltage | | 0 | V _{CC} | V | | T _A | Operating Temperature | | -40 | +85 | °C | | t _r , t _f | Input Rise and Fall Time | V _{CC} = 1.8 V ±0.15 V, 2.5 V ±0.2 V | 0 | 20 | ns/V | | | | V _{CC} = 3.3 V ±0.3 V | 0 | 10 | | | | V _{CC} = 5.0 V ±0.5 V | | 0 | 5 | | | $\theta_{\sf JA}$ | Thermal Resistance US8 | | - | 250 | °C/W | | | | MicroPak-8 | - | 232 | °C/W | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 1. Unused inputs must be held HIGH or LOW. They may not float. ## NC7WZ08 ## DC ELECTICAL CHARACTERISTICS | | | | Conditions | | T _A = +25°C | | | T _A = -40 to +85°C | | | |------------------|------------------------------|---------------------|---|--------------------------|------------------------|------|----------------------|-------------------------------|----------------------|------| | Symbol | Parameter | V _{CC} (V) | | | Min | Тур | Max | Min | Max | Unit | | V _{IH} | HIGH Level Input | 1.65 – 1.95 | | | | - | - | 0.65 V _{CC} | _ | V | | | Voltage | 2.3 – 5.5 | | | | - | - | 0.7 V _{CC} | _ | | | V _{IL} | LOW Level Input | 1.65 – 1.95 | | | - | - | 0.35 V _{CC} | _ | 0.35 V _{CC} | V | | | Voltage | 2.3 – 5.5 | | | - | - | 0.3 V _{CC} | _ | 0.3 V _{CC} | | | V _{OH} | HIGH Level Output | 1.65 | $V_{IN} = V_{IH}$ | $I_{OH} = -100 \mu A$ | 1.55 | 1.65 | - | 1.55 | _ | V | | | Voltage | 2.3 | | | 2.2 | 2.3 | - | 2.2 | _ | | | | | 3.0 | | | 2.9 | 3.0 | - | 2.9 | _ | | | | | 4.5 | | | 4.4 | 4.5 | - | 4.4 | _ | | | | | 1.65 | | $I_{OH} = -4 \text{ mA}$ | 1.29 | 1.52 | - | 1.29 | _ | | | | | 2.3 | | I _{OH} = -8 mA | 1.9 | 2.15 | - | 1.9 | _ | | | | | 3.0 | | I _{OH} = -16 mA | 2.5 | 2.80 | - | 2.4 | _ | | | | | 3.0 | | I _{OH} = -24 mA | 2.4 | 2.68 | - | 2.3 | _ | 1 | | | 4.5 | | I _{OH} = -32 mA | 3.9 | 4.20 | - | 3.8 | _ | | | | V_{OL} | LOW Level Output | | _ | 0.0 | 0.1 | _ | 0.1 | ٧ | | | | | Voltage | 2.3 | | | - | 0.0 | 0.1 | _ | 0.1 | | | | | 3.0 | | | - | 0.0 | 0.1 | _ | 0.1 | | | | | 4.5 | | | - | 0.0 | 0.1 | - | 0.1 | | | | | 1.65 | | I _{OL} = 4 mA | _ | 0.08 | 0.24 | _ | 0.24 | | | | | 2.3 | | I _{OL} = 8 mA | - | 0.10 | 0.3 | _ | 0.3 | | | | | 3.0 | | I _{OL} = 16 mA | - | 0.15 | 0.4 | _ | 0.4 | | | | | 3.0 | | I _{OL} = 24 mA | - | 0.22 | 0.55 | _ | 0.55 | | | | 4.5 | | I _{OL} = 32 mA | - | 0.22 | 0.55 | _ | 0.55 | | | | I _{IN} | Input Leakage Current | 1.65 – 5.5 | V _{IN} = 5.5 V, GND | | _ | - | ±0.1 | _ | ±1 | μΑ | | I _{OFF} | Power Off Leakage
Current | 0.0 | V _{IN} or V _{OUT} = 5.5 V | | - | - | 1 | - | 10 | μΑ | | I _{CC} | Quiescent Supply
Current | 1.65 – 5.5 | V _{IN} = 5.5 \ | , GND | - | - | 1 | - | 10 | μΑ | ### **AC ELECTRICAL CHARACTERISTICS** | | | | | T _A = +25°C | | T _A = -40 | to +85°C | | | |---|-------------------|---------------------|-------------------------|------------------------|------|----------------------|----------|------|------| | Symbol | Parameter | V _{CC} (V) | Conditions | Min | Тур | Max | Min | Max | Unit | | t _{PLH} , t _{PHL} | Propagation Delay | 1.8 ±0.15 | C _L = 15 pF, | - | 5.7 | 10.5 | - | 11.0 | ns | | | (Figure 5, 7) | 2.5 ±0.2 | $R_L = 1 M\Omega$, | - | 3.5 | 5.8 | - | 6.2 | | | | | 3.3 ±0.3 | 1 | - | 2.6 | 3.9 | - | 4.3 | | | | | 5.0 ±0.5 | | - | 1.9 | 3.1 | _ | 3.3 | | | | | 3.3 ±0.3 | C _L = 50 pF, | - | 3.2 | 4.8 | _ | 5.2 | | | | | 5.0 ±0.5 | $R_L = 500 \Omega$, | - | 2.5 | 3.7 | - | 4.0 | | | C _{IN} | Input Capacitance | 0 | | - | 2.5 | - | - | - | pF | | C _{PD} Power Dissipation Capacitance | 3.3 | (Note 2) | - | 14.5 | - | - | - | pF | | | | (Figure 6) | 5.0 | | - | 19.5 | - | _ | - | | ^{2.} C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (see Figure 6) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static). ### **AC Loading and Waveforms** C_L includes load and stray capacitance Input PRR = 1.0 MHz, t_W = 500 ns INPUT O = Input = AC Waveform; $t_r = t_f = 1.8$ ns; PRR = 10 MHz; Duty Cycle = 50%. Figure 5. AC Test Circuit Figure 6. I_{CCD} Test Circuit Figure 7. AC Waveforms ### NC7WZ08 ### **ORDERING INFORMATION** | Order Number | Top Mark | Package | Shipping [†] | |--------------|----------|---|-----------------------| | NC7WZ08K8X | WZ08 | 8-Lead US8, JEDEC MO-187, Variation CA
3.1 mm Wide | 3000 / Tape & Reel | | NC7WZ08L8X | X4 | 8-Lead MicroPak, 1.6 mm Wide | 5000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 3. All packages are lead free per JEDEC: J-STD-020B standard. MicroPak is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. UQFN8 1.6X1.6, 0.5P CASE 523AY ISSUE O **DATE 31 AUG 2016** RECOMMENDED LAND PATTERN #### NOTES: - A. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD. - B. DIMENSIONS ARE IN MILLIMETERS. - C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009. - D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN. | DOCUMENT NUMBER: | 98AON13591G | Electronic versions are uncontrolled except when accessed directly from the Document Reposit
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|---------------------|---|-------------|--|--| | DESCRIPTION: | UQFN8 1.6X1.6, 0.5P | | PAGE 1 OF 1 | | | ON Semiconductor and a retrademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. US8 CASE 846AN ISSUE O **DATE 31 DEC 2016** ## RECOMMENDED LAND PATTERN ## **NOTES:** - A. CONFORMS TO JEDEC REGISTRATION MO-187 - **B. DIMENSIONS ARE IN MILLIMETERS.** - C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. - D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994. ## **SIDE VIEW** | DOCUMENT NUMBER: | 98AON13778G | Electronic versions are uncontrolled except when accessed directly from the Document Reposi
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|--|-------------|--| | DESCRIPTION: | US8 | | PAGE 1 OF 1 | | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.