NCN5150 Evaluation Board User's Manual

Introduction

The NCN5150SOICGEVB and NCN5150QFNGEVB evaluation boards demonstrate the NCN5150 M-BUS transceiver in SOIC and QFN package respectively. These evaluation boards include all external components needed for operating NCN5150 and demonstrate the small PCB surface area such an implementation requires.

Overview

The NCN5150 is a single-chip integrated slave transceiver for use in two-wire Meter Bus (M-BUS) slave devices and repeaters. The transceiver provides all of the functions needed to satisfy the European Standards EN 13757–2 and EN 1434–3 describing the physical layer requirements for M-BUS. It includes a programmable power level of up to 2 (SOIC version) or 6 (NQFP version) unit loads, which are available for use in external circuits through a 3.3 V LDO regulator. The NCN5150 can provide communication up to the maximum M-BUS communication speed of 38,400 baud (half-duplex).

Applications

Multi-energy Utility Meters

- Water
- Gas
- Electricity
- Heating Systems

Features

- Single-chip MBUS Transceiver
- UART Communication Speeds Up to 38,400 baud

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

- Integrated 3.3 V VDD LDO Regulator with Extended Peak Current
- Capability of 15 mA
- Supports Powering Slave Device from the Bus or from External Power Supply
- Adjustable I/O Levels
- Adjustable Constant Current Sink up to 2 or 6 Unit Loads Depending on the Package
- Low Bus Voltage Operation
- Extended Current Budget for External Circuits: minimum 0.8 mA
- Polarity Independent
- Power-Fail Function
- Fast Startup No External Transistor Required on STC Pin
- Industrial Ambient Temperature Range of -40°C to +85°C
- Available in:
 - ◆ 16-pin SOIC (Pin-to-Pin Compatible with TSS721A)
 - ◆ 20-pin QFN
- These are Pb-free Devices

Figure 1. The NCN5150NGEVB Evaluation Boards

ELECTRICAL CHARACTERISTICS

Table 1. ELECTRICAL CHARACTERISTICS OF THE NCN5150SOICGEVB AND NCN5150QFNGEVB BOARD

		Value					
Symbol	Parameter / Condition	Min	Тур	Max	Unit		
Bus Voltage							
V _{BUS}	Bus Voltage	12	36	42	V		
Current Drawn from the Bus							
I _{BUS}	1 UL		1.3	1.5	mA		
Output Voltage							
V _{DD}	LDO output	3.1	3.3	3.6	V		

NCN5150 DESCRIPTION

The NCN5150 provide a complete transceiver for the Metering Bus (M-BUS). It consists of a transmit block which will translate the logic level uart input to current level signaling on the bus, and a receive block which will translate the voltage-level signaling on the bus to a logic-level uart output. The device includes an echo function which will echo the uart input on the uart output, provided the device is powered. This can be used by the software stack to monitor if the message was transmitted. The high voltage level of the microcontroller interface can be changed by connecting the desired voltage to the VIO pin. By default, this pin is

connected through a 0R resistor to 3.3 V on the evaluation boards.

A constant current regulator that will draw a fixed current from the bus, expressed in unit loads (UL). This current is made available to the application through a low-dropout 3.3 V regulator. The NCN5150 will detect when the bus is disconnected and provide an early warning to the microcontroller that the 3.3 V supply is about to collapse through the PFb pin.

A thermal shutdown protects the device against high junction temperatures.

NCN5150SOICGEVB DESCRIPTION

General Overview

The NCN5192NGEVB evaluation board demonstrates the external components required for the operation of the IC.

We will cover the different sections below as well as possible alternatives. A drawing of the board where the different sections are indicated is shown below.

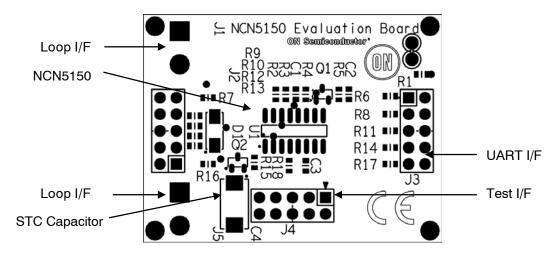


Figure 2. Board Drawing with Indication of Different Sections

BOM List

Table 2. NCN5150SOICGEVB BILL OF MATERIALS

Quantity	Reference	Part	Footprint	Comments	Manufacturer	Product Code
1	C1	1u	C0603	6V3	Multicomp	MCCA000515
1	C2	DNP	C0603	DNP	-	-
5	R3, R5, R9, R12, R13	DNP	R0603	DNP	-	-
1	С3	100n	C0603	50 V	Multicomp	MCCA000256
1	C4	220u	Case E	10 V	AVX	TAJD227K010RNJ
1	D1	1SMA40CAT3G	SMA		ON Semiconductor	1SMA40CAT3G
2	J1,J5	CON2		DNP	IMO Precision	21.95MH/2
3	J2,J3,J4	CON10A		DNP	Multicomp	2214S-10SG-85
2	Q1,Q2	DNP	SOT-23	DNP	-	-
4	R1, R4, R10, R15	0R	R0603	62.5 mW	Multicomp	MC0603WG00000T5E-TR
6	R2, R6, R8, R11, R14, R17	100R	R0603	62.5 mW	Multicomp	MC0.063W06031%100RFR
2	R7, R16	220R	R0603	62.5 mW	Multicomp	MC0.063W06031%220RFR
1	R18	30K	R0603	62.5 mW	Multicomp	MC0.063W06031%30KFR
1	TP1	GND		DNP	-	-
1	TP2	3V3		DNP	-	-
1	U1	NCN5150	SOIC16	DNP	ON Semiconductor	NCN5150DR2G

Schematic Diagram

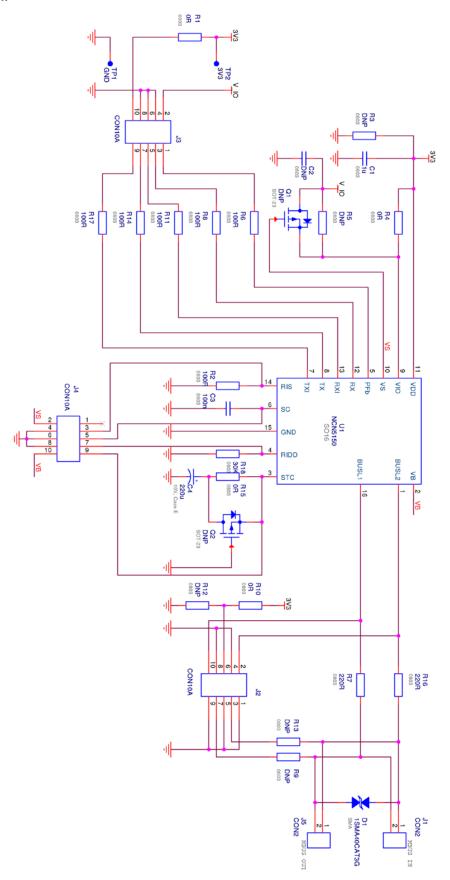


Figure 3. Schematic of NCN5150SOICGEVB

NCN5150QFNGEVB DESCRIPTION

General Overview

The NCN5150QFNGEVB evaluation board demonstrates the external components required for the operation of the IC. We will cover the different sections

below as well as possible alternatives. A drawing of the board where the different sections are indicated is shown below.

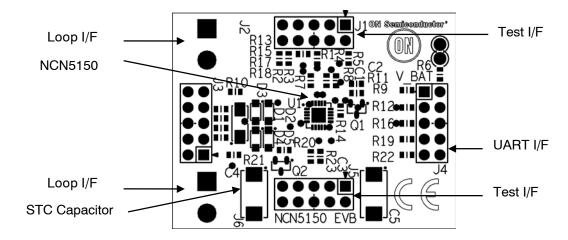


Figure 4. Board Drawing with Indication of Different Sections

BOM List

Table 3. NCN5150QFNGEVB BILL OF MATERIALS

Quantity	Reference	Part	Footprint	Comments	Manufacturer	Product Code
1	C1	1u	C0603	6.3 V	Multicomp	MCCA000515
1	C2	DNP	C0603	DNP	-	-
1	С3	100n	C0603	50 V	Multicomp	MCCA000256
1	C4	220u	Case E	10 V	AVX	TAJD227K010RNJ
1	C5	DNP	Case E	DNP	-	-
4	D1, D2, D4, D5	DNP	SOD-123	DNP	-	-
1	D3	1SMA40CAT3G	SMA		ON Semiconductor	1SMA40CAT3G
4	J1, J3, J4, J5	CON10A		DNP	IMO Precision	21.95MH/2
2	J2, J6	CON2		DNP	Multicomp	2214S-10SG-85
2	Q1, Q2	DNP	SOT-23	DNP	-	-
10	R1,R2,R3,R4,R5, R8,R11,R13,R15, R18	DNP		DNP	-	-
6	R7,R9,R12,R16, R19,R22	100R	R0603	62.5 mW	Multicomp	MC0.063W06031%100RFR
4	R6,R14,R17,R20	0R	R0603	62.5 mW	Multicomp	MC0603WG00000T5E-TR
2	R10, R21	220R	R0603	62.5 mW	Multicomp	MC0.063W06031%220RFR
1	R23	30K	R0603	62.5 mW	Multicomp	MC0.063W06031%30KFR
1	TP1	GND		DNP	-	-
1	TP2	3V3		DNP	-	-
1	U1	NCN5150	QFN20	ON Sample	ON Semiconductor	NCN5150MNTWG

Schematic Diagram

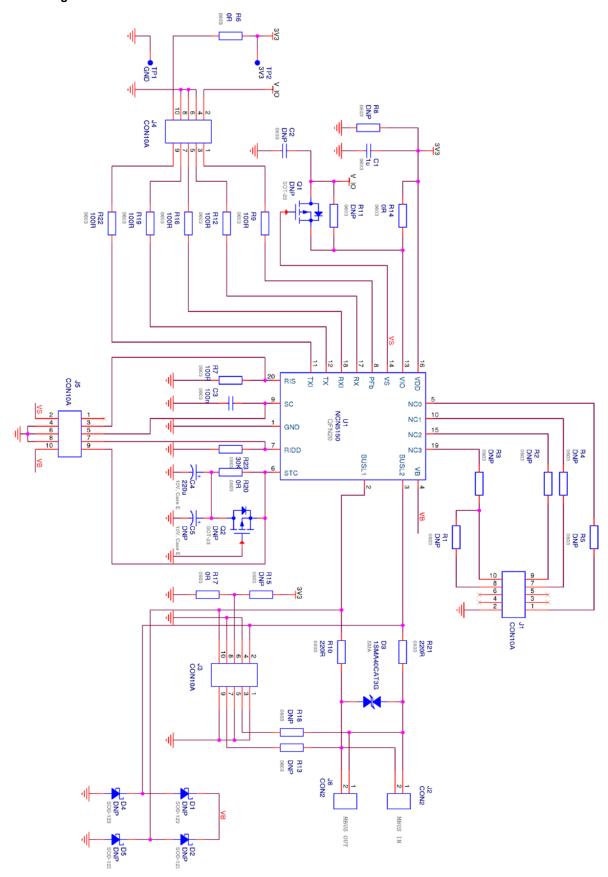


Figure 5. Schematic of NCN5150QFNGEVB

FUNCTIONAL DESCRIPTION

Power Supply

The NCN5150 provides power to be used in the application. To do this, the NCN5150 draws a fixed current from the bus. The amount of current drawn is fixed at a number of unit loads (intervals of 1.5 mA) and can be set by changing the value of the RIDD resistor. The SOIC version can support up to 2 UL, while the QFN version can support up to 6 UL. The required resistors for are shown in table xx.

Also shown in table xx is the maximum amount of capacitance allowed on the STC pin. This limit will ensure that the transceiver will start up in less than 3 s as required by the M-BUS standard. Using a smaller capacitor on STC is allowed, and will result in faster start-up, but also in a faster shutdown, reducing the time between the early warning PFb toggling (when the bus is removed) and the point where the 3.3V VDD voltage can no longer be maintained. The minimum allowed capacitance on STC is 10 times the capacitance on the VDD pin. The minimum required capacitance on the VDD pin is 1 μ F.

Table 4. UL, RIDD VALUES, STC CAPACITANCE

Number of Unit Loads	RIDD Value	Maximum STC Capacitor Value	Min. Avail- able Current
1	30 kΩ	330 μF	0.88 mA
2	13 kΩ	820 μF	2.10 mA
3	8.45 kΩ	1200 μF	3.10 mA
4	6.19 kΩ	1500 μF	4.20 mA
5	4.87 kΩ	2200 μF	5.30 mA
6	4.02 kΩ	2700 μF	6.50 mA

Shown in Figure 6 is the startup sequence of the device. Note that the NCN5150 does not require any external (PMOS) transistor on the STC pin for proper startup. The yellow waveform is the bus voltage, the purple waveform the STC voltage, the green waveform the VDD output, and the blue waveform the TX output.

Figure 6. NCN5150 Startup Sequence

Shown in Figure 7 is the shutdown sequence of the device. The green waveform is the bus voltage, the blue waveform is the VDD output, the purple waveform is the PFb output, and the yellow waveform is the TX output.

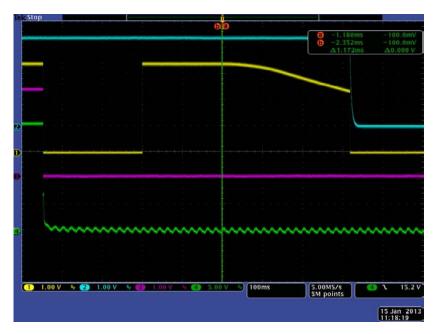


Figure 7. NCN5150 Shutdown Sequence

UART Interface IDC1

The interface between the transceiver and an external microcontroller is a standard uart interface consisting of the TX and RX. Alternatively, inverted signals, TXI and RXI, which are active high, are also available. Only one signal from TX and TXI, or from RX and RXI can be used at the same time. The uart pins can handle communication up to 38400 baud. The M-BUS standard requires communication with 1 start bit, 8 data-bits, 1 even parity bit and 1 stop bit.

Also available on the same connector is the VIO connection, PFb indication and 3V3 VDD output.

Table 5. MICROCONTROLLER INTERFACE

Pin number	Signal	Туре	Description
1	PFb	Output	Bus failure indication
2	VIO	Power	IO voltage level
3	RX	Input	UART input
5	RXI	Input	UART input, inverted
7	TX	Output	UART output
9	TXI	Output	UART output, Inverted
4, 6, 8	GND	Power	Ground
10	VDD	Power	3V3 Output

Transmitter

The M-Bus transmitter translated the RX or RXI voltage levels to current levels on the bus. Typically, 15 mA is added when transmitting a space.

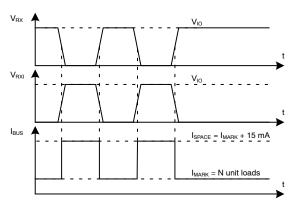


Figure 8. Output Waveforms

Receiver

The receiver will compare the bus voltage level with the mark level stored on the SC capacitor minus the threshold level (typically 6 V). It will translate these voltage levels to low voltage communication on the TX and TXI pins. The high voltage of these pins is determined by the VIO voltage.

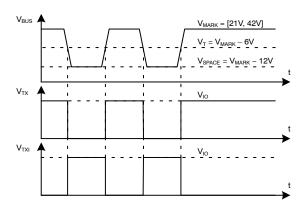


Figure 9. Receive Waveforms

APPENDIX

Evaluation Board Layout

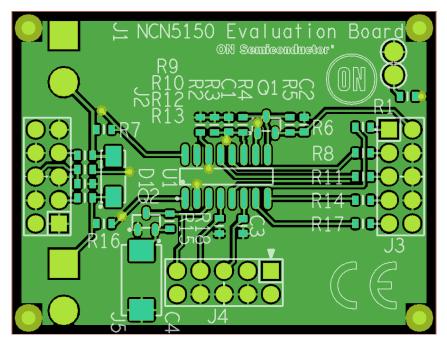


Figure 10. Top Layer Layout (SOIC)

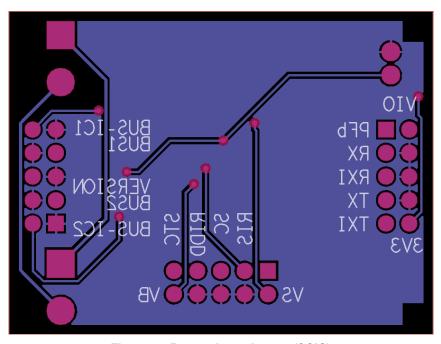


Figure 11. Bottom Layer Layout (SOIC)

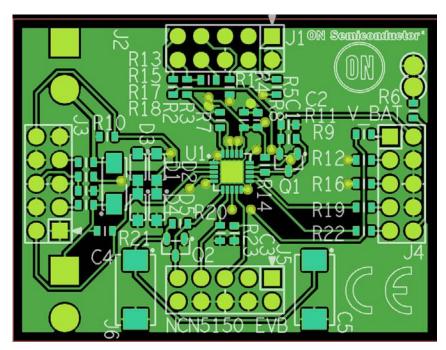


Figure 12. Top Layer Layout (QFN)

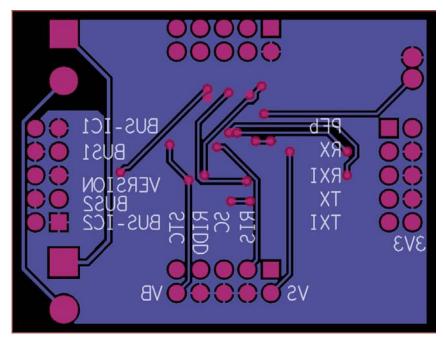


Figure 13. Bottom Layer Layout (QFN)