# 3 A Ultra-Small Controlled Load Switch with Auto-Discharge Path and Reverse Current Control

The NCP339 is a very low Ron MOSFET controlled by external logic pin, allowing optimization of battery life, and portable device autonomy.

Indeed, due to a current consumption optimization with PMOS structure, leakage currents are eliminated by isolating connected IC on the battery when not used.

Reverse blocking control is automatically engage if OUT pin voltage is higher than IN pin voltage, eliminate leakages current from OUT to IN.

Proposed in a wide input voltage range from 1.2~V to 5.5~V, in a small 1~x~1.5~mm WLCSP6, pitch 0.5~mm.

#### **Features**

- 1.2 V 5.5 V Operating Range
- 19 m $\Omega$  P MOSFET at 4.5 V
- DC Current up to 3 A
- Soft Start Control
- Low Quiescent Current
- Reverse Blocking
- Active High EN pin
- WLCSP6 1 x 1.5 mm
- This is a Pb-Free Device

#### **Typical Applications**

- Mobile Phones
- Tablets
- Digital Cameras
- GPS
- Portable Devices
- Computers



# ON Semiconductor®

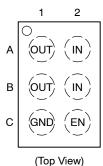
http://onsemi.com



WLCSP6, 1.00x1.50 CASE 567FH

#### **MARKING DIAGRAM**




XX = NP or DP

A = Assembly Location

Y = Year
W = Work Week
Pb-Free Package

(\*Note: Microdot may be in either location)

# PACKAGE PINOUT DIAGRAM



#### ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 9 of this data sheet.

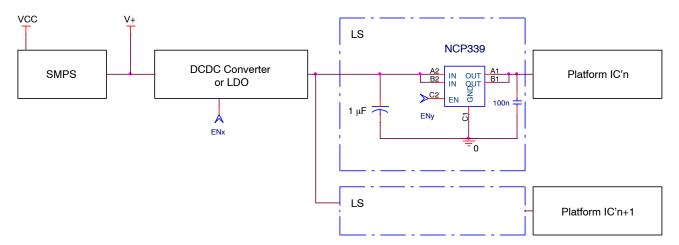



Figure 1. Typical Application Circuit

**Table 1. PIN FUNCTION DESCRIPTION** 

| Pin Name | Pin Number | Туре   | Description                                                                                                                      |
|----------|------------|--------|----------------------------------------------------------------------------------------------------------------------------------|
| IN       | A2, B2     | POWER  | Load-switch input voltage; connect a 1 $\mu\text{F}$ or greater ceramic capacitor from IN to GND as close as possible to the IC. |
| GND      | C1         | POWER  | Ground connection.                                                                                                               |
| EN       | C2         | INPUT  | Enable input, logic high turns on power switch.                                                                                  |
| OUT      | A1, B1     | OUTPUT | Load-switch output; connect a 100 nF ceramic capacitor from OUT to GND as close as possible to the IC is recommended.            |

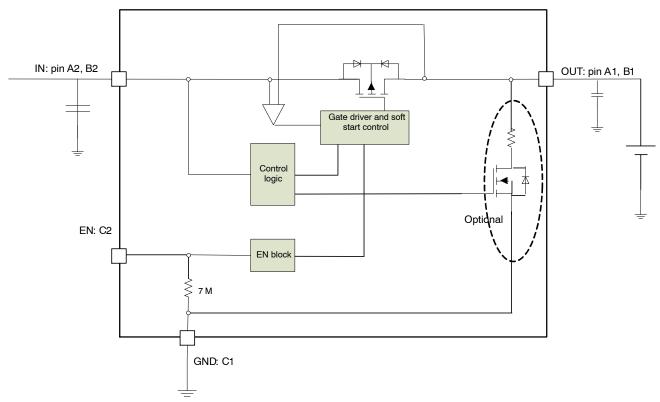



Figure 2. Block Diagram

**Table 2. MAXIMUM RATINGS** 

| Rating                                               | Symbol                                               | Value        | Unit |
|------------------------------------------------------|------------------------------------------------------|--------------|------|
| IN, OUT, EN, Pins: (Note 1)                          | V <sub>EN</sub> , V <sub>IN</sub> , V <sub>OUT</sub> | -0.3 to +7.0 | V    |
| From IN to OUT Pins: Input/Output (Note 1)           | V <sub>IN,</sub> V <sub>OUT</sub>                    | -7.0 to +7.0 | V    |
| Human Body Model (HBM) ESD Rating are (Note 1 and 2) | ESD HBM                                              | 4000         | V    |
| Machine Model (MM) ESD Rating are (Note 1 and 2)     | ESD MM                                               | 250          | V    |
| Latch-up protection (Note 3)  – Pins IN, OUT, EN     | LU                                                   | 100          | mA   |
| Maximum Junction Temperature                         | TJ                                                   | -40 to +125  | °C   |
| Storage Temperature Range                            | T <sub>STG</sub>                                     | -55 to +150  | °C   |
| Moisture Sensitivity (Note 4)                        | MSL                                                  | Level 1      |      |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

**Table 3. OPERATING CONDITIONS** 

| Symbol           | Parameter                          | Co                     | onditions     | Min | Тур | Max  | Unit |
|------------------|------------------------------------|------------------------|---------------|-----|-----|------|------|
| V <sub>IN</sub>  | Operational Power Supply           |                        |               | 1.2 |     | 5.5  | V    |
| V <sub>EN</sub>  | Enable Voltage                     |                        |               | 0   |     | 5.5  |      |
| T <sub>A</sub>   | Ambient Temperature Range          |                        |               | -40 | 25  | +85  | °C   |
| T <sub>J</sub>   | Junction Temperature Range         |                        |               | -40 | 25  | +125 | °C   |
| C <sub>IN</sub>  | Decoupling input capacitor         |                        |               | 1   |     |      | μF   |
| C <sub>OUT</sub> | Decoupling output capacitor        |                        |               | 100 |     |      | nF   |
| $R_{\theta JA}$  | Thermal Resistance Junction to Air | WLCSP package (Note 3) |               |     | 100 |      | °C/W |
| I <sub>OUT</sub> | Maximum DC current                 |                        |               |     |     | 3    | Α    |
| $P_{D}$          | Power Dissipation Rating (Note 4)  | T <sub>A</sub> ≤ 25 °C | WLCSP package |     | 1   |      | W    |
|                  |                                    | T <sub>A</sub> = 85 °C | WLCSP package |     | 0.4 |      | W    |

- According to JEDEC standard JESD22-A108.
   Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020.
   The R<sub>θJA</sub> is dependent of the PCB heat dissipation and thermal via.
   The maximum power dissipation (PD) is given by the following formula:

$$\mathsf{P}_\mathsf{D} = \frac{\mathsf{T}_\mathsf{JMAX} \! - \! \mathsf{T}_\mathsf{A}}{\mathsf{R}_{\theta \mathsf{JA}}}$$

# **Table 4. ELECTRICAL CHARACTERISTICS**

Min & Max Limits apply for  $T_A$  between  $-40^{\circ}C$  to  $+85^{\circ}C$  for  $V_{IN}$  between 1.2 V to 5.5 V (Unless otherwise noted). Typical values are referenced to  $T_A = +25^{\circ}C$  and  $V_{IN} = 5$  V (Unless otherwise noted).

| Symbol                | Parameter                                   | Conditions                      |                                       |     | Тур  | Max | Unit |
|-----------------------|---------------------------------------------|---------------------------------|---------------------------------------|-----|------|-----|------|
| POWER S               | WITCH                                       |                                 |                                       |     |      |     |      |
| R <sub>DSON</sub>     | Static drain-source                         | Vin = 5.5 V                     | lout = 200 mA, T <sub>A</sub> = 25°C  |     | 18   |     | mΩ   |
|                       | on-state resistance                         | Vin = 5.5 V                     | Tj = 125°C                            |     |      | 30  |      |
|                       |                                             | Vin = 4.5 V                     | lout = 200 mA, T <sub>A</sub> = 25°C  |     | 19   |     |      |
|                       |                                             |                                 | Tj = 125°C                            |     |      | 30  |      |
|                       |                                             | Vin = 3.3 V                     | lout = 200 mA, T <sub>A</sub> = 25°C  |     | 22   |     |      |
|                       |                                             |                                 | Tj = 125°C                            |     |      | 30  |      |
|                       |                                             | Vin = 2.5 V                     | lout = 200 mA, T <sub>A</sub> = 25°C  |     | 27   |     |      |
|                       |                                             |                                 | Tj = 125°C                            |     |      | 40  |      |
|                       |                                             | Vin = 1.8 V                     | lout = 200 mA, T <sub>A</sub> = 25°C  |     | 37   |     |      |
|                       |                                             |                                 | Tj = 125°C                            |     |      | 60  |      |
|                       |                                             | Vin = 1.5 V                     | lout = 200 mA, T <sub>A</sub> = 25°C  |     | 48   |     |      |
|                       |                                             |                                 | Tj = 125°C                            |     |      | 110 |      |
| Rdis                  | Output discharge path                       | EN = low                        | Discharge path option                 |     | 70   | 90  | Ω    |
| V <sub>IH</sub>       | High-level input voltage                    |                                 |                                       | 1.2 |      |     | V    |
| V <sub>IL</sub>       | Low-level input voltage                     |                                 |                                       |     |      | 0.8 |      |
| R <sub>pd</sub>       | EN pull down resistor                       |                                 |                                       | 5.5 | 7.1  | 9.5 | МΩ   |
| REVERSE               | CURRENT BLOCKING                            | •                               |                                       |     |      |     |      |
| V <sub>rev_thr</sub>  | Reverse threshold                           | Vout-Vin                        |                                       |     | 40   |     | mV   |
| V <sub>rev_hyst</sub> | Reverse threshold hysteresis                |                                 |                                       |     | 60   |     | mV   |
| T <sub>rev</sub>      | Reverse comparator response time            | Vout-Vin > V <sub>rev_thr</sub> |                                       |     | 2.5  |     | μs   |
| QUIESCE               | NT CURRENT                                  |                                 |                                       |     |      |     |      |
| Istd                  | Standby current                             | Vin = 4.2 V                     | EN = low, No load, GND current        |     | 0.35 | 0.6 | μА   |
| I <sub>in_leak</sub>  | Mos leakage current                         | Vin = 4.2 V                     | EN = low, Vout = GND, Vout current    |     | 9    | 200 | nA   |
| Iq                    | Quiescent current                           | Vin = 4.2 V                     | EN = high, No load, GND current       |     | 1.0  | 1.5 | μΑ   |
| I <sub>out_leak</sub> | Output leakage current                      | Vout = 4.2 V                    | Vin = GND                             |     | 16   | 200 | nA   |
| TIMINGS               |                                             |                                 |                                       |     |      |     |      |
| T <sub>EN</sub>       | Enable time                                 | Vin = 4.2 V                     | $R_L = 5 \Omega$ , Cout = 100 $\mu$ F |     | 1.7  |     | ms   |
| T <sub>R</sub>        | Output rise time                            | (Note 6)                        |                                       |     | 2.7  |     | ]    |
| T <sub>ON</sub>       | ON time (T <sub>EN</sub> + T <sub>R</sub> ) |                                 |                                       |     | 4.4  |     |      |
| T <sub>F</sub>        | Output fall time                            |                                 |                                       |     | 1.5  |     |      |
| T <sub>EN</sub>       | Enable time                                 | Vin = 4.2 V                     | $R_L$ = 25 Ω, Cout = 1 μF             | 0.5 | 1.0  | 2.5 | ms   |
| T <sub>R</sub>        | Output rise time                            | (Note 6)                        |                                       | 0.4 | 1.5  | 2.3 | 1    |
| T <sub>ON</sub>       | ON time (T <sub>EN</sub> + T <sub>R</sub> ) |                                 |                                       | 0.9 | 2.5  | 4.8 | 1    |
| T <sub>F</sub>        | Output fall time                            |                                 |                                       |     | 0.06 | 0.1 | 1    |

- Guaranteed by design and characterization.
   Parameters are guaranteed for C<sub>LOAD</sub> and R<sub>LOAD</sub> connected to the OUT pin with respect to the ground.

# **Table 4. ELECTRICAL CHARACTERISTICS**

Min & Max Limits apply for  $T_A$  between  $-40^{\circ}C$  to  $+85^{\circ}C$  for  $V_{IN}$  between 1.2 V to 5.5 V (Unless otherwise noted). Typical values are referenced to  $T_A = +25^{\circ}C$  and  $V_{IN} = 5$  V (Unless otherwise noted).

| Symbol           | Parameter                                                |             | Conditions                   | Min | Тур | Max | Unit |
|------------------|----------------------------------------------------------|-------------|------------------------------|-----|-----|-----|------|
| T <sub>EN</sub>  | Enable time                                              | Vin = 4.2 V | $R_L$ = 150 Ω, Cout = 100 μF |     | 1.7 |     | ms   |
| T <sub>R</sub>   | Output rise time                                         | (Note 6)    |                              |     | 1.5 |     |      |
| T <sub>ON</sub>  | ON time (T <sub>EN</sub> + T <sub>R</sub> )              |             |                              |     | 3.2 |     |      |
| T <sub>DIS</sub> | Disable time                                             |             |                              |     | 1.8 |     |      |
| T <sub>F</sub>   | Fall time                                                |             |                              |     | 4   |     |      |
| T <sub>OFF</sub> | Output fall time<br>(T <sub>F</sub> + T <sub>DIS</sub> ) |             |                              |     | 42  |     |      |

- 5. Guaranteed by design and characterization.
  6. Parameters are guaranteed for C<sub>LOAD</sub> and R<sub>LOAD</sub> connected to the OUT pin with respect to the ground.

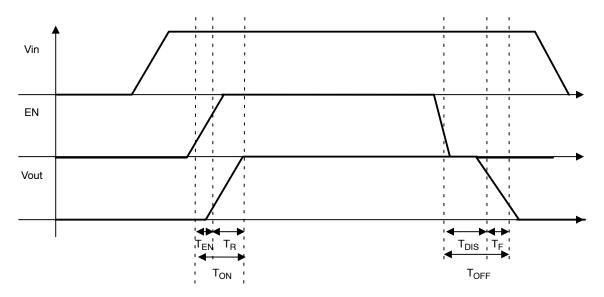



Figure 3. Timings

# **TYPICAL CHARACTERISTICS**

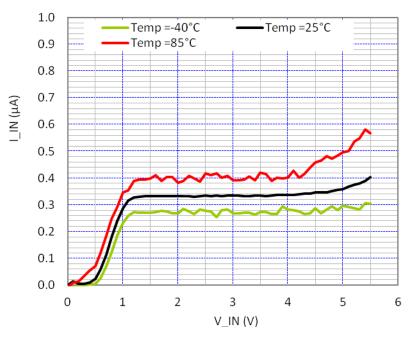



Figure 4. Standby Current ( $\mu A$ ) versus Vin (V)

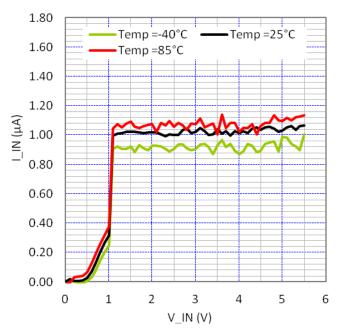



Figure 5. Quiescent Current ( $\mu A$ ) versus Vin (V)

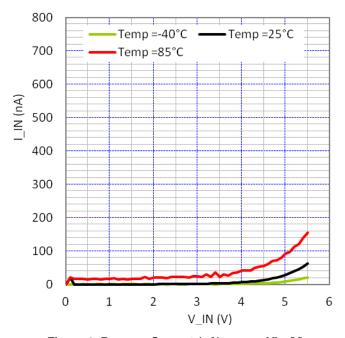



Figure 6. Reverse Current (nA) versus Vin (V)



Figure 7.  $R_{DSON}$  (m $\Omega$ ) versus Temperature ( $I_{LOAD}$  = 100 mA)

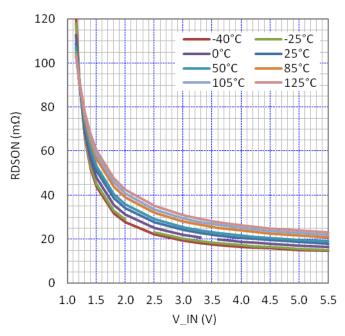



Figure 8.  $R_{DSON}$  (m $\Omega$ ) versus Vin (V)

#### **FUNCTIONAL DESCRIPTION**

#### Overview

The NCP339 is a high side P channel MOSFET power distribution switch designed to isolate ICs connected on the battery in order to save energy. The part can be turned on, with a wide range of battery from 1.2 V to 5.5 V. Reverse blocking from output to input control is embedded in the IC to eliminate leakage current if Vout voltage exceed front end power supply.

#### **Enable Input**

Enable pin is an active high. The path is opened when EN pin is tied low (disable), forcing P MOS switch off.

The IN/OUT path is activated with a minimum of Vin of 1.2 V and EN forced to high level.

#### **Blocking Control**

The reverse blocking feature allows to avoid reverse current, through the PMOS fet if a voltage is applied on Vout pin, and  $V_{rev\_thr}$  above the Vin pin. This function is available, whatever the EN logic pin state (High or low). To retrieve normal state, Vin-Vout must be higher to hysteresis of the reverse blocking comparator ( $V_{rev\_hyst}$ ). The reverse blocking comparator response time is set to  $T_{rev}$ .

**Table 5. CONTROL LOGIC** 

| V <sub>IN</sub> | V <sub>OUT</sub>   | EN   |
|-----------------|--------------------|------|
| Present         | Mos OFF            | Low  |
| Present         | Mos ON             | High |
| Mos OFF         | $V_{OUT} > V_{IN}$ | х    |

#### **Auto Discharge (Optional)**

NMOS FET is placed between the output pin and GND, in order to discharge the application capacitor connected on OUT pin.

The auto-discharge is activated when EN pin is set to low level (disable state).

The discharge path (Pull down NMOS) stays activated as long as EN pin is set at low level and Vin > 1.2 V.

In order to limit the current across the internal discharge Nmosfet, the typical value is set at 70  $\Omega$ .

#### **Cin and Cout Capacitors**

Cin 1  $\mu F$  and Cout 100 nF , at least, capacitors must be placed as close as possible the part to for stability improvement.

For inrush effects at start up, it's recommended to respect Cin > Cout size.

#### **APPLICATION INFORMATION**

#### **Power Dissipation**

Main contributor in term of junction temperature is the power dissipation of the power MOSFET. Assuming this, the power dissipation and the junction temperature in normal mode can be calculated with the following equations:

•  $P_D = R_{DS(on)} \times (I_{OUT})^2$ 

 $P_D$  = Power dissipation (W)

 $R_{DS(on)}$  = Power MOSFET on resistance ( $\Omega$ )

I<sub>OUT</sub> = Output current (A)

•  $T_J = P_D \times R_{\theta JA} + T_A$ 

 $T_{\rm J}$  = Junction temperature (°C)

 $R_{\theta JA}$  = Package thermal resistance (°C/W)

 $T_A$  = Ambient temperature (°C)

#### **PCB Recommendations**

The NCP339 integrates an up to 3 A rated PMOS FET, and the PCB design rules must be respected to properly

evacuate the heat out of the silicon. By increasing PCB area, especially around IN and OUT pins, the  $R_{\theta JA}$  of the package can be decreased, allowing higher power dissipation.

Routing example: 2 oz, 4 layers with vias across 2 internal inners.

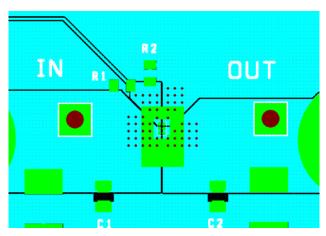



Figure 9.

Example of application definition.

$$T_J - T_A = R_{\theta JA} \times P_D = R_{\theta JA} \times R_{DSON} \times I^2$$

T<sub>J</sub>: junction temperature.

T<sub>A</sub>: ambient temperature.

 $R_{\theta}$  = Thermal resistance between IC and air, through PCB.

R<sub>DSON</sub>: intrinsic resistance of the IC Mosfet.

I: load DC current.

Taking into account of  $R_{\theta}$  obtain with:

• 1 oz, 2 layers: 100°C/W.

At 3 A, 25°C ambient temperature,  $R_{DSON}$  20 m $\Omega$  @

Vin 5 V, the junction temperature will be:

$$T_J = T_A + R_\theta \times P_D = 25 + (0.02 \times 3^2) \times 100 = 43^{\circ}C$$

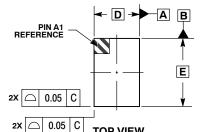
Taking into account of  $R_{\theta}$  obtain with:

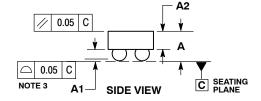
• 2 oz, 4 layers: 60°C/W.

At 3 A, 65°C ambient temperature,  $R_{DSON}$  24 m $\Omega$  @ Vin 5 V, the junction temperature will be:

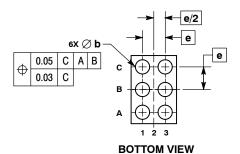
$$T_J = T_A + R_\theta \times P_D = 65 + (0.024 \times 3^2) \times 60 = 78^{\circ}C$$

# ORDERING INFORMATION


| Device       | Marking | Option                 | Package                         | Shipping <sup>†</sup> |
|--------------|---------|------------------------|---------------------------------|-----------------------|
| NCP339AFCT2G | NP      | Without Auto-discharge | WLCSP6, 1 x 1.5 mm<br>(Pb-Free) | 3000 / Tape & Reel    |
| NCP339BFCT2G | DP      | With Auto-discharge    | WLCSP6, 1 x 1.5 mm<br>(Pb-Free) | 3000 / Tape & Reel    |


<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

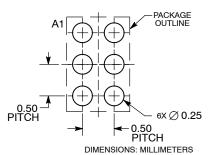



WLCSP6, 1.00x1.50 CASE 567FH **ISSUE O** 

**DATE 17 APR 2012** 






**TOP VIEW** 



- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
  2. CONTROLLING DIMENSION: MILLIMETERS.
  3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

|     | MILLIMETERS |      |  |  |  |
|-----|-------------|------|--|--|--|
| DIM | MIN         | MAX  |  |  |  |
| Α   | 0.54        | 0.63 |  |  |  |
| A1  | 0.22        | 0.28 |  |  |  |
| A2  | 0.33 REF    |      |  |  |  |
| b   | 0.29        | 0.34 |  |  |  |
| D   | 1.00 BSC    |      |  |  |  |
| E   | 1.50 BSC    |      |  |  |  |
| e   |             |      |  |  |  |

#### **RECOMMENDED SOLDERING FOOTPRINT\***



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: 98AON79918E |                   | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:                 | WLCSP6, 1.00X1.50 |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.