DDR 2-Amp Source / Sink V_{TT} Termination Regulator

The NCP/NCV51199 is a linear regulator designed to supply a regulated V_{TT} termination voltage for DDR–2 and DDR–3 memory applications. The regulator is capable of actively sourcing and sinking ± 2 A peak currents for DDR–2, and DDR–3 up to ± 1.5 A while regulating the V_{TT} output voltage to within ± 10 mV. The output termination voltage is regulated to track V_{DDQ} / 2 by two external voltage divider resistors connected to the PV_{CC}, GND, and V_{REF} pins.

The NCP/NCV51199 incorporates a high-speed differential amplifier to provide ultra-fast response to line and load transients. Other features include source/sink current limiting, soft-start and on-chip thermal shutdown protection.

Features

- Supports DDR-2 V_{TT} Termination to ± 2 A, DDR-3 to ± 1.5 A (peak)
- Stable with 10 µF Ceramic Capacitance on V_{TT} Output
- Integrated Power MOSFETs
- High Accuracy V_{TT} Output at Full-Load
- Fast Transient Response
- Built-in Soft-Start
- Shutdown for Standby or Suspend Mode
- Integrated Thermal and Current-Limit Protection
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

- SDRAM Termination Voltage for DDR-2 / DDR-3
- Motherboard, Notebook, and VGA Card Memory Termination
- Set Top Box, Digital TV, Printers

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

1

Figure 1. Application Diagram

PIN FUNCTION DESCRIPTION

Pin No.	Pin Name	Description
1	PV _{CC}	Input voltage which supplies current to the output pin. C_{IN} = 470 μ F with low ESR.
2	GND	Common Ground
3	V _{REF}	Buffered reference voltage input equal to $\frac{1}{2}$ of V _{DDQ} and active low shutdown pin. An external resistor divider dividing down the PV _{CC} voltage creates the regulated output voltage. Pulling the pin to ground (0.15 V maximum) turns the device off.
4	V _{TT}	Regulator output voltage capable of sourcing and sinking current while regulating the output rail. C_{OUT} = 1000 μ F + 10 μ F ceramic with low ESR.
5	NC	True No Connect
6	V _{cc}	The V _{CC} pin is a 5 V input pin that provides internal bias to the controller. PV_{CC} should always be kept lower or equal to V _{CC} .
7	NC	True No Connect
8	NC	True No Connect
EP	Thermal Pad	Pad for thermal connection. The exposed pad must be connected to the ground plane using multiple vias for maximum power dissipation performance.

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Supply Voltage Range ($V_{cc} \ge PV_{CC}$) (Note 1)	PV _{CC} , V _{CC}	-0.3 to 6	V
Output Voltage Range	V _{TT}	–0.3 to 6	V
Reference Input Range	V _{REF}	–0.3 to 6	V
Maximum Junction Temperature	T _{J(max)}	125	°C
Storage Temperature Range	TSTG	-65 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESDHBM	2	kV
ESD Capability, Machine Model (Note 2)	ESDMM	150	V
Lead Temperature Soldering Reflow (SMD Styles Only), Pb–Free Versions (Note 3)	T _{SLD}	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.
This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114)

ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)

Latchup Current Maximum Rating: ≤150 mA per JEDEC standard: JESD78

3. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, SO8–EP (Note 4) Thermal Resistance, Junction–to–Air (Note 5)	R _{θJA}	84	°C/W
Power Rating at 25°C Ambient = 1.19 W, derate 12 mW/°C Thermal Reference, Junction–to–Lead2 (Note 5)	$R_{\Psi JL}$	20	

4. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.

5. Values based on copper area of 645 mm² (or 1 in²) of 1 oz copper thickness and FR4 PCB substrate.

OPERATING RANGES (Note 6)

Rating	Symbol	Min	Max	Unit
Input Voltage	PV _{CC}	1.5	5.5	V
Bias Supply Voltage	V _{CC}	4.75	5.25	V
Ambient Temperature	T _A	-40	85	°C
Junction Temperature	TJ	-40	125	°C

6. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

ELECTRICAL CHARACTERISTICS

 $PV_{CC} = 1.8 \text{ V} / 1.5 \text{ V}; V_{CC} = 5 \text{ V}; V_{REF} = 0.9 \text{ V} / 0.75 \text{ V}; C_{OUT} = 10 \text{ } \mu\text{F} \text{ (Ceramic)}; T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted}.$

Parameter	Test Conditions Symbol		Min	Тур	Max	Unit
REGULATOR OUTPUT						
Output Offset Voltage	$I_{out} = 0 A$	V _{OS}	-20	-	+20	mV
Load Regulation	V_{REF} = 900 mV, I_{out} = ±1.8 A, PV _{CC} = 1.8 V V _{REF} = 750 mV, I_{out} = ±1.4 A, PV _{CC} = 1.5 V	Reg _{load}	-10	-	+10	mV
INPUT AND STANDBY CURREN	TS					
Bias Supply Current	I _{out} = 0 A	I _{BIAS}	-	0.8	2.5	mA
Standby Current	V_{REF} < 0.2 V (Shutdown), R_{LOAD} = 180 Ω	I _{STB}	-	1	90	μΑ
CURRENT LIMIT PROTECTION	CURRENT LIMIT PROTECTION					
Current Limit	$PV_{CC} = 1.8 \text{ V}, \text{ V}_{REF} = 0.9 \text{ V}$		2.0	_	3.5	٨
Current Limit	$PV_{CC} = 1.5 V, V_{REF} = 0.75 V$	LIM	1.5	_	3.5	A
SHUTDOWN THRESHOLDS						
Shutdown Threshold Voltage	Enable	V _{IH}	0.6	_	-	V
	Shutdown	V _{IL}	-	-	0.15	v
THERMAL SHUTDOWN						
Thermal Shutdown Temperature	$V_{CC} = 5 V$	T _{SD}	160	168	176	°C
Thermal Shutdown Hysteresis	$V_{CC} = 5 V$	T _{SH}	35	35	40	°C

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Table 1. ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NCP51199PDR2G	51199	SOIC-8	2500 / Tapa & Real
NCV51199PDR2G*	V51199	(Pb-Free)	2000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

//

rights of others

Mounting Techniques Reference Manual, SOLDERRM/D.

or not be present.

DOCUMENT NUMBER:	98AON66222E	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (the Document Repository. COPY" in red.		
DESCRIPTION:	SOIC8-NB EP		PAGE 1 OF 1		
ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.					
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding					
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically					
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

© Semiconductor Components Industries, LLC, 2019