Video Amplifier

The NE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high-pass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers. Now available in an 8-pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor.

Features

- 120 MHz Unity Gain Bandwidth
- Adjustable Gains from 0 to 400
- Adjustable Pass Band
- No Frequency Compensation Required
- Wave Shaping with Minimal External Components
- MIL-STD Processing Available
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Floppy Disk Head Amplifier
- Video Amplifier
- Pulse Amplifier in Communications
- Magnetic Memory
- Video Recorder Systems

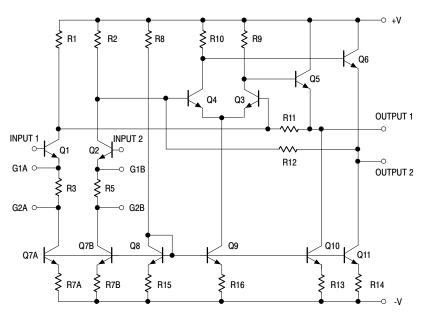
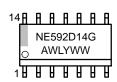
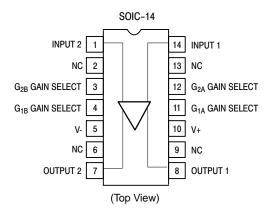
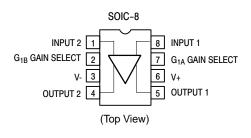


Figure 1. Block Diagram

ON Semiconductor®


www.onsemi.com


A = Assembly Location


L, WL = Wafer Lot Y = Year W, WW = Work Week ■ or G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

PIN CONNECTIONS

MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit	
Supply Voltage		V _{CC}	±8.0	V
Differential Input Voltage		V _{IN}	±5.0	V
Common-Mode Input Voltage		V _{CM}	±6.0	V
Output Current		I _{OUT}	10	mA
Operating Ambient Temperature Range		T _A	0 to +70	°C
Operating Junction Temperature		TJ	150	°C
Storage Temperature Range		T _{STG}	65 to +150	°C
Maximum Power Dissipation, T _A = 25°C (Still Air) (Note 1)	SOIC-14 Package SOIC-8 Package	P _{D MAX}	0.98 0.79	W
Thermal Resistance, Junction–to–Ambient	SOIC-14 Package SOIC-8 Package	R _{θJA}	145 182	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Derate above 25°C at the following rates:
 SOIC-14 package at 6.9 mW/°C
 SOIC-8 package at 5.5 mW/°C

DC ELECTRICAL CHARACTERISTICS ($V_{SS} = \pm 6.0 \text{ V}$, $V_{CM} = 0$, typicals at $T_A = +25^{\circ}\text{C}$, min and max at $0^{\circ}\text{C} \leq T_A \leq 70^{\circ}\text{C}$, unless otherwise noted. Recommended operating supply voltages $V_S = \pm 6.0 \text{ V}$.)

Characteristic	Test Conditions	Symbol	Min	Тур	Max	Unit
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Notes 3 and 4)	$R_L = 2.0 \text{ k}\Omega, V_{OUT} = 3.0 \text{ V}_{P-P}$	A _{VOL}	250 80	400 100	600 120	V/V
$\begin{array}{c c} \text{Input Resistance} & & & - \\ \text{Gain 1 (Note 2)} & & - \\ \text{Gain 2 (Notes 3 and 4)} & & T_{\text{A}} = 25^{\circ}\text{C} \\ & 0^{\circ}\text{C} \leq T_{\text{A}} \leq 70^{\circ}\text{C} \end{array}$		R _{IN}	- 10 8.0	4.0 30 -	- - -	kΩ
Input Capacitance	Gain 2 (Note 4)	C _{IN}	_	2.0	-	pF
Input Offset Current	$T_{A} = 25^{\circ}C$ $0^{\circ}C \le T_{A} \le 70^{\circ}C$	los	_ _	0.4 -	5.0 6.0	μΑ
Input Bias Current $ T_A = 25^{\circ}C \\ 0^{\circ}C \leq T_A \leq 70^{\circ}C $		I _{BIAS}	_ _	9.0	30 40	μΑ
Input Noise Voltage	BW 1.0 kHz to 10 MHz	V _{NOISE}	-	12	-	μV_{RMS}
Input Voltage Range	-	V _{IN}	±1.0	_	-	V
Common-Mode Rejection Ratio Gain 2 (Note 4)	$V_{CM} \pm 1.0 \text{ V, f} < 100 \text{ kHz, T}_{A} = 25^{\circ}\text{C}$ $V_{CM} \pm 1.0 \text{ V, f} < 100 \text{ kHz,}$ $0^{\circ}\text{C} \le T_{A} \le 70^{\circ}\text{C}$	CMRR	60 50	86 -	- -	dB
	$V_{CM} \pm 1.0 \text{ V}, f < 5.0 \text{ MHz}$		-	60	_	
Supply Voltage Rejection Ratio Gain 2 (Note 4)	$\Delta V_S = \pm 0.5 \text{ V}$	PSRR	50	70	-	dB
Output Offset Voltage Gain 1 Gain 2 (Note 4) Gain 3 (Note 5) Gain 3 (Note 5)	$R_L = \infty$ $R_L = \infty$ $R_L = \infty$ $R_L = \infty, T_A = 25^{\circ}C$ $R_L = \infty, 0^{\circ}C \le T_A \le 70^{\circ}C$	Vos	- - - -	- - 0.35 -	1.5 1.5 0.75 1.0	V
Output Common-Mode Voltage	$R_L = \infty$, $T_A = 25^{\circ}C$	V _{CM}	2.4	2.9	3.4	V
Output Voltage Swing Differential	$R_L = 2.0 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$ $R_L = 2.0 \text{ k}\Omega, 0^{\circ}\text{C} \le T_A \le 70^{\circ}\text{C}$	V _{OUT}	3.0 2.8	4.0 -	- -	V
Output Resistance	-	R _{OUT}	-	20	-	Ω
Power Supply Current	$\begin{array}{c} R_L = \infty , T_A = 25^{\circ}C \\ R_L = \infty , 0^{\circ}C \leq T_A \leq 70^{\circ}C \end{array}$	Icc		18 -	24 27	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

$\textbf{AC ELECTRICAL CHARACTERISTICS} \ (T_{A} = +25^{\circ}C \ V_{SS} = \\ \pm 6.0 \ V, \ V_{CM} = 0, \ unless \ otherwise \ noted. \ Recommended \ operating$ supply voltages $V_S = \pm 6.0 \text{ V.}$)

Characteristic	Test Conditions	Symbol	Min	Тур	Max	Unit
Bandwidth Gain 1 (Note 2)	-	BW	_	40 90	-	MHz
Gain 2 (Notes 3 and 4) Rise Time		t _R	_	90	_	ns
Gain 1 (Note 2) Gain 2 (Notes 3 and 4)	V _{OUT} = 1.0 V _{P-P}	***	_ _	10.5 4.5	12 -	
Propagation Delay Gain 1 (Note 2) Gain 2 (Notes 3 and 4)	V _{OUT} = 1.0 V _{P-P}	t _{PD}	_ _	7.5 6.0	10 -	ns

- Gain select Pins G_{1A} and G_{1B} connected together.
 Gain select Pins G_{2A} and G_{2B} connected together.
 Applies to 14-pin version only.
 All gain select pins open.

TYPICAL PERFORMANCE CHARACTERISTICS

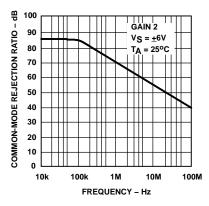


Figure 2. Common–Mode Rejection Ratio as a Function of Frequency

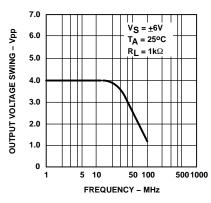


Figure 3. Output Voltage Swing as a Function of Frequency

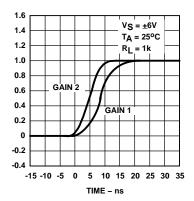


Figure 4. Pulse Response

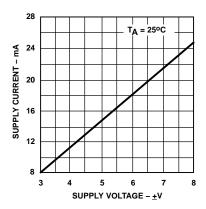


Figure 5. Supply Current as a Function of Temperature

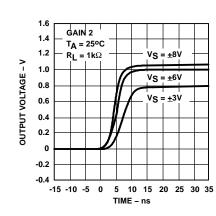


Figure 6. Pulse Response as a Function of Supply Voltage

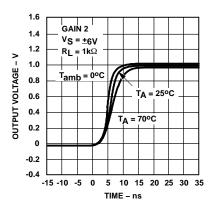


Figure 7. Pulse Response as a Function of Temperature

Figure 8. Voltage Gain as a Function of Temperature

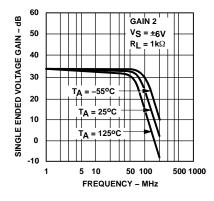


Figure 9. Gain vs. Frequency as a Function of Temperature

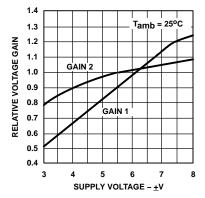


Figure 10. Voltage Gain as a Function of Supply Voltage

TYPICAL PERFORMANCE CHARACTERISTICS



Figure 11. Gain vs. Frequency as a Function of Supply Voltage

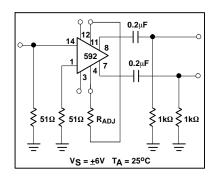


Figure 12. Voltage Gain Adjust Circuit

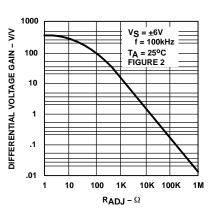


Figure 13. Voltage Gain as a Function of RADJ (Figure 2)

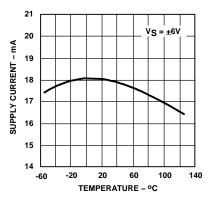


Figure 14. Supply Current as a Function of Temperature

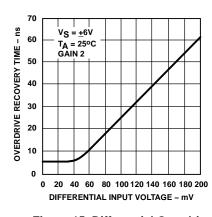


Figure 15. Differential Overdrive Recovery Time

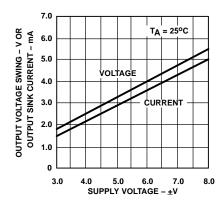


Figure 16. Output Voltage and Current Swing as a Function of Supply Voltage

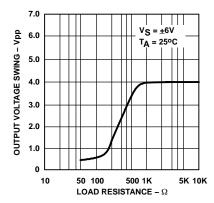


Figure 17. Output Voltage Swing as a Function of Load Resistance

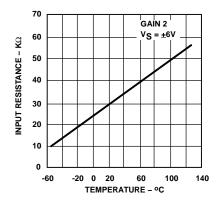


Figure 18. Input Resistance as a Function of Temperature

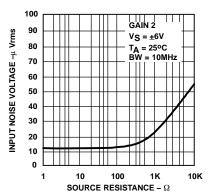


Figure 19. Input Noise Voltage as a Function of Source Resistance

TYPICAL PERFORMANCE CHARACTERISTICS

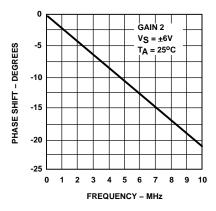


Figure 20. Phase Shift as a Function of Frequency

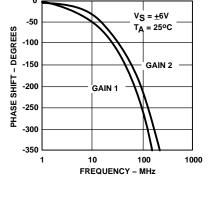


Figure 21. Phase Shift as a Function of Frequency

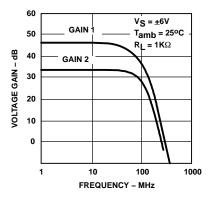


Figure 22. Voltage Gain as a Function of Frequency

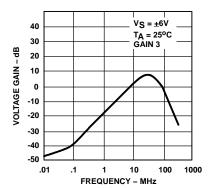


Figure 23. Voltage Gain as a Function of Frequency

TEST CIRCUITS ($T_A = 25^{\circ}C$, unless otherwise noted.)

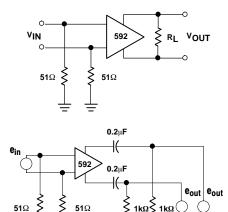


Figure 24. Test Circuits

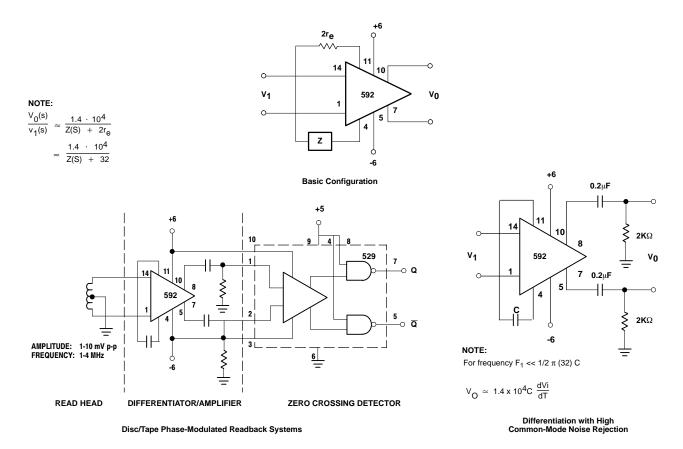


Figure 25. Typical Applications

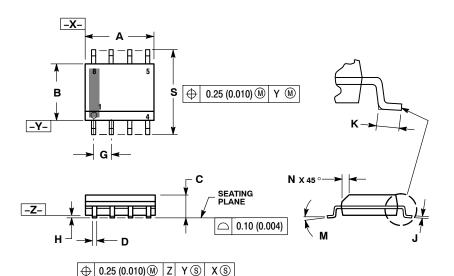
Z NETWORK	FILTER TYPE	V ₀ (s) TRANSFER V ₁ (s) FUNCTION
R L	LOW PASS	$\frac{1.4 \times 10^4}{L} \left[\frac{1}{s + R/L}\right]$
∞	HIGH PASS	$\frac{1.4 \times 10^4}{R} \left[\frac{s}{s + 1/RC} \right]$
∞ R L C C	BAND PASS	$\frac{1.4 \times 10^4}{L} \left[\frac{s}{s^2 + R/Ls + 1/LC} \right]$
R C C	BAND REJECT	$\frac{1.4 \times 10^{4}}{R} \left[\frac{s^{2} + 1/LC}{s^{2} + 1/LC + s/RC} \right]$

NOTES:

In the networks above, the R value used is assumed to include $2r_{\hbox{\it e}},$ or approximately $32\Omega.$ S = $j\Omega$ Ω = $2\pi f$

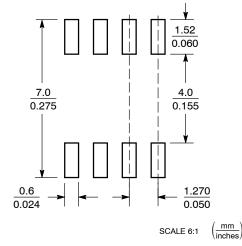
Figure 26. Filter Networks

ORDERING INFORMATION

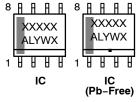

Device	Temperature Range	Package	Shipping [†]
NE592D8G		SOIC-8	98 Units/Rail
NE592D8R2G	0 to +70°C	(Pb-Free)	2500 / Tape & Reel
NE592D14G		SOIC-14	55 Units/Rail
NE592D14R2G		(Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

SOIC-8 NB CASE 751-07 **ISSUE AK**

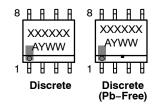

DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	1.27 BSC		0 BSC
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

= Wafer Lot = Year = Work Week

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α

= Year ww = Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

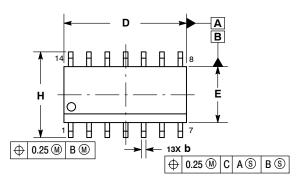
ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

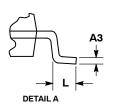
SOIC-8 NB CASE 751-07 ISSUE AK

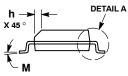
DATE 16 FEB 2011

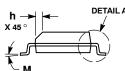
STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. PINS 2	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 STYLE 7: PIN 1. IMPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2	3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE 2. SOURCE
PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND	PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2	PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE 2. SOURCE
PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND	PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2	PIN 1. SOURCE 2. SOURCE
6. BIAS 2 7. INPUT 8. GROUND	5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND	STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		
	PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE 8. CATHODE 8. CATHODE 8. CATHODE 9. COMMON CATHODE/VCC 9. COMMON CATHODE/VCC 1. (/O LINE 1 2. COMMON CATHODE/VCC 1. (/O LINE 3 5. COMMON ANODE/GND 6. (/O LINE 5 8. COMMON ANODE/GND 8.	PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. CATHODE, COMMON 8. N-DRAIN 8. CATHODE, COMMON 8. CATHODE 9IN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 4. GATE 2 5. DRAIN 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 8. COMMON CATHODE/VCC 1. COMMON CATHODE/VCC 1. COMMON CATHODE/VCC 1. (/O LINE 1 2. COMMON CATHODE/VCC 1. (/O LINE 3 5. COMMON ANODE/GND 6. (/O LINE 4 7. (/O LINE 5 8. COMMON ANODE/GND 8. LINE 2 OUT 9. COMMON ANODE/GND 8. LINE 1 OUT STYLE 26: PIN 1. GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 27: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 28: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. COMMON ANODE/GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. COMM

DOCUMENT NUMBER:	98ASB42564B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	

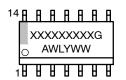

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.




△ 0.10


SOIC-14 NB CASE 751A-03 ISSUE L

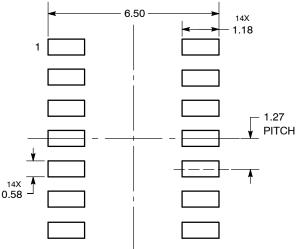
DATE 03 FEB 2016



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 - ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT
- MAXIMUM MATERIAL CONDITION.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
АЗ	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050	BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7 °

GENERIC MARKING DIAGRAM*



XXXXX = Specific Device Code Α = Assembly Location

WL = Wafer Lot Υ = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator. "G" or microdot " ■". may or may not be present.

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

C SEATING PLANE

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B Electronic versions are uncontrolled except when accessed directly from the Document F Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.