ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

NGTD23T120F2

IGBT Die

Trench Field Stop II IGBT Die for motor drive and inverter applications.

Features

- Extremely Efficient Trench with Field Stop Technology
- Low V_{CE(sat)} Loss Reduces System Power Dissipation

Typical Applications

- Industrial Motor Drives
- Solar Inverters
- UPS Systems
- Welding

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector–Emitter Voltage, $T_J = 25^{\circ}C$	V _{CE}	1200	V
DC Collector Current, limited by $T_{J(\text{max})}$	Ι _C	(Note 1)	A
Pulsed Collector Current (Note 2)	I _{C, pulse}	120	А
Gate-Emitter Voltage	V _{GE}	±20	V
Maximum Junction Temperature	TJ	-55 to +175	°C
Short Circuit Withstand Time, V_{GE} = 15 V, V_{CE} = 500V, T_J \leq 150°C	T _{SC}	10	μs

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

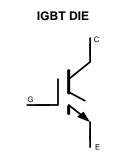
1. Depending on thermal properties of assembly.

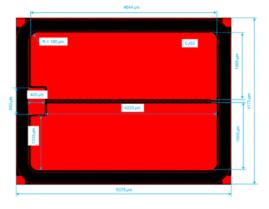
2. T_{pulse} limited by T_{jmax} , 10 µs pulse, V_{GE} = 15 V.

MECHANICAL DATA

Parameter	Value	Unit		
Die Size	5375 x 4175 μm ²			
Emitter Pad Size	See die layout	μm ²		
Gate Pad Size	405 x 660	μm ²		
Die Thickness	5	mils		
Wafer Size	150	mm		
Top Metal	5 μm AlSi			
Back Metal	2 μm TiNiAg			
Max possible chips per wafer	546			
Passivation frontside	Oxide-Nitride			
Reject ink dot size	25 mils			
Recommended storage environment: In original container, in dry nitrogen, or temperature of 18–28°C, 30–65%RH	Type: Bare Wafer in Jar Storage time: < 36 months	Type: Die on tape in ring-pack Storage time: < 3 months		

ORDERING INFORMATION


Device	Inking?	Shipping
NGTD23T120F2WP	Yes	Bare Wafer in Jar
NGTD23T120F2SWK	Yes	Sawn Wafer on Tape

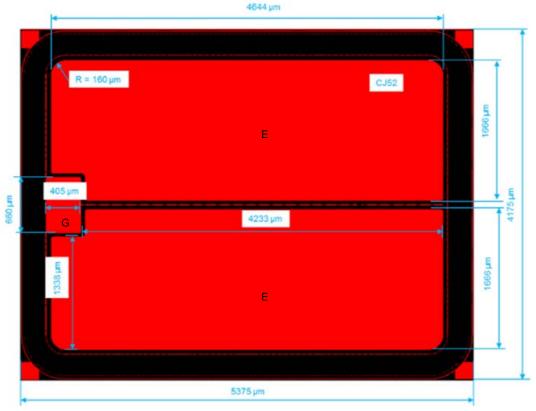

ON Semiconductor®

www.onsemi.com

V_{RCE} = 1200 V I_C = Limited by T_{J(max)}

DIE OUTLINE

NGTD23T120F2


ELECTRICAL CHARACTERISTICS (T_J = 25° C, unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Units
STATIC CHARACTERISTICS						
Collector-Emitter Breakdown Voltage	V_{GE} = 0 V, I _C = 500 μ A	V _{(BR)CES}	1200			V
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 25 A	V _{CE(sat)}		1.9	2.2	V
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 400 \ \mu A$	V _{GE(TH)}	4.5	5.5	6.5	V
Collector-Emitter Cutoff Current	$V_{GE} = 0 V, V_{CE} = 1200 V$	I _{CES}			1.0	mA
Gate Leakage Current	$V_{GE} = 20 \text{ V}, \text{ V}_{CE} = 0 \text{ V}$	I _{GES}			200	nA
DYNAMIC CHARACTERISTICS						
land Oracitana		0		5050		

Input Capacitance		Cies	5250	pF
Output Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{oes}	170	pF
Reverse Transfer Capacitance		C _{res}	100	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

DIE LAYOUT

 $\begin{array}{l} \mathsf{E}=\mathsf{Emitter} \ \mathsf{pad} \\ \mathsf{G}=\mathsf{Gate} \ \mathsf{pad} \\ \mathsf{All} \ \mathsf{dimensions} \ \mathsf{in} \ \mathsf{\mu}\mathsf{m} \end{array}$