NJD35N04G, NJVNJD35N04G, NJVNJD35N04T4G

NPN Darlington Power Transistor

This high voltage power Darlington has been specifically designed for inductive applications such as Electronic Ignition, Switching Regulators and Motor Control.

Features

- Exceptional Safe Operating Area
- High V_{CE}; High Current Gain
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These are Pb-Free Devices*

Benefits

- Reliable Performance at Higher Powers
- Designed for Inductive Loads
- Very Low Current Requirements

Applications

- Internal Combustion Engine Ignition Control
- Switching Regulators
- Motor Controls
- Light Ballast
- Photo Flash

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Sustaining Voltage	V _{CEO}	350	Vdc	
Collector-Base Breakdown Voltage	V _{CBO}	700	Vdc	
Collector-Emitter Breakdown Voltage	V _{CES}	700	Vdc	
Emitter-Base Voltage	V _{EBO}	5.0	Vdc	
Collector Current Continuous Peak	I _C	4.0 8.0	Adc	
Base Current	I _B	0.5	Adc	
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	45 0.36	W W/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1

ON Semiconductor®

http://onsemi.com

DARLINGTON
POWER TRANSISTORS
4 AMPERES
350 VOLTS
45 WATTS

DPAK CASE 369C STYLE 1

MARKING DIAGRAM

Y = Year WW = Work Week NJD35N04 = Device Code G = Pb-Free Device

ORDERING INFORMATION

Device	Package	Shipping [†]
NJD35N04G	DPAK (Pb-Free)	75 Units / Rail
NJVNJD35N04G	DPAK (Pb-Free)	75 Units / Rail
NJD35N04T4G	DPAK (Pb-Free)	2,500 / Tape & Reel
NJVNJD35N04T4G	DPAK (Pb-Free)	2,500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NJD35N04G, NJVNJD35N04G, NJVNJD35N04T4G

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance Junction-to-Case Junction-to-Ambient	R _{θJC} R _{θJA}	2.78 71.4	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	'				L
Collector-Emitter Sustaining Voltage (I _C = 10 mA, L = 10 mH)	V _{CEO(sus)}	350	-	-	V
Collector Cutoff Current ($V_{CE} = 500 \text{ V}$) ($I_B = 0$) ($V_{CE} = 500 \text{ V}$, $T_C = 125^{\circ}\text{C}$)	I _{CES}	- -		50 250	μΑ
Collector Cutoff Current ($V_{CE} = 250 \text{ V}$) ($I_B = 0$) ($V_{CE} = 200 \text{ V}$, $T_C = 125^{\circ}\text{C}$)	I _{CEO}	- -	<u>-</u> -	50 250	μΑ
Emitter Cutoff Current (V _{BE} = 5.0 Vdc)	I _{EBO}	-	-	5.0	μΑ
ON CHARACTERISTICS	'			1	
Collector–Emitter Saturation Voltage (I_C = 2.0 A, I_B = 20 mA) (I_C = 2.0 A, I_B = 20 mA 125°C)	V _{CE(sat)}	- -	- -	1.5 1.5	V
Base–Emitter Saturation Voltage (I_C = 2.0 A, I_B = 20 mA) (I_C = 2.0 A, I_B = 20 mA 125°C)	V _{BE(sat)}	- -	- -	2.0 2.0	V
Base–Emitter On Voltage (I _C = 2.0 A, V _{CE} = 2.0 V) (I _C = 2.0 A, V _{CE} = 2.0 V∏ 25°C)	V _{BE(on)}	- -	- -	2.0 2.0	V
DC Current Gain (I _C = 2.0 A, V _{CE} = 2.0 V) (I _C = 4.0 A, V _{CE} = 2.0 Vdc)	h _{FE}	2000 300	_ _	_ _ _	-
DYNAMIC CHARACTERISTICS			!	!	<u> </u>
Current–Gain – Bandwidth Product (I _C = 2.0 A, V _{CE} = 10 V, f = 1.0 MHz)	f _T	90	_	_	MHz
Output Capacitance (V _{CB} = 10 V, I _E = 0, f = 0.1 MHz)	C _{ob}	-	60	-	pF
SWITCHING CHARACTERISTICS	•		•	•	•
V _{CC} = 12 V, V _{clamp} = 250 V, L = 4 mH I _C = 2 A, I _{B1} = 20 mA, I _{B2} = -20 mA	t _s	- -	18 0.8	- -	μSec

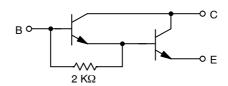


Figure 1. Darlington Circuit Schematic

NJD35N04G, NJVNJD35N04G, NJVNJD35N04T4G

TYPICAL CHARACTERISTICS

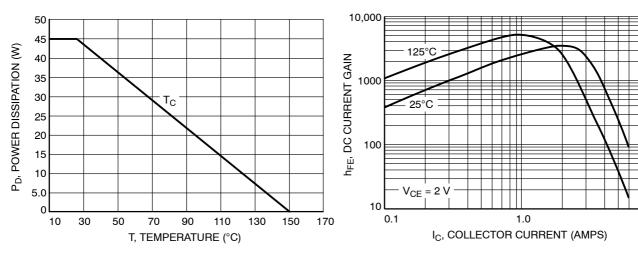


Figure 2. Power Derating

Figure 3. DC Current Gain

10

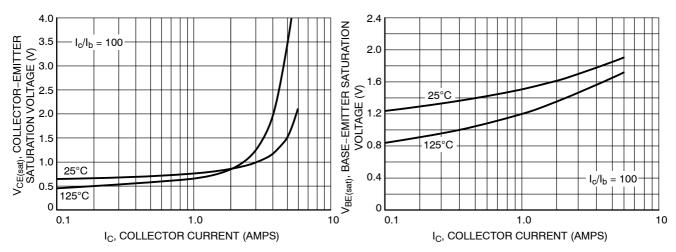


Figure 4. Collector-Emitter Saturation Voltage

Figure 5. Base-Emitter Saturation Voltage

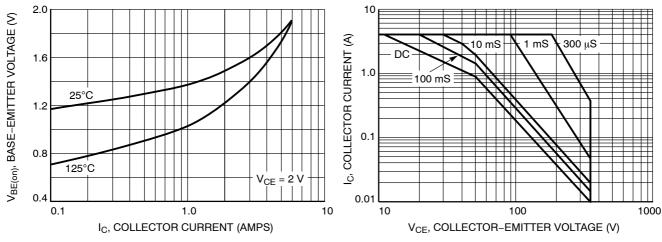
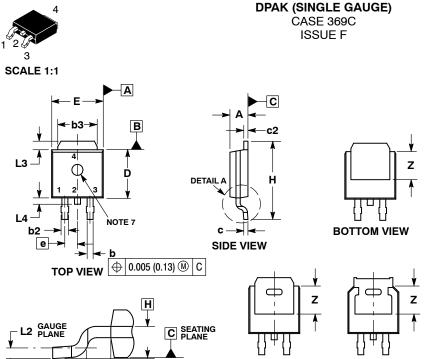
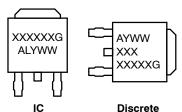



Figure 6. Base-Emitter Voltage

Figure 7. Forward Bias Safe Operating Area (FBSOA)

DATE 21 JUL 2015


NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIM	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090 BSC		2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114 REF		2.90 REF		
L2	0.020 BSC		0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

GENERIC MARKING DIAGRAM*

= Device Code XXXXXX

= Assembly Location Α

L = Wafer Lot Υ = Year

WW = Work Week G = Pb-Free Package

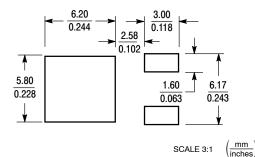
*This information is generic. Please refer to device data sheet for actual part marking.

PIN 1. GATE 2. ANODE 3. CATHODE PIN 1. BASE 2. COLLECTOR 3. EMITTER GATE SOURCE 3. ANODE 3. 4. CATHODE 4. COLLECTOR 4. ANODE 4. DRAIN 4. ANODE STYLE 6: STYLE 7: STYLE 8: STYLE 9: STYLE 10: PIN 1. MT1 2. MT2 PIN 1. GATE 2. COLLECTOR PIN 1. N/C 2. CATHODE PIN 1. ANODE 2. CATHODE PIN 1. CATHODE 2. ANODE 3. GATE 4. MT2 3. EMITTER 4. COLLECTOR 3. ANODE 4. CATHODE 3. RESISTOR ADJUST 4. CATHODE 3. CATHODE 4. ANODE

STYLE 3:

PIN 1. ANODE 2. CATHODE

SOLDERING FOOTPRINT*


Α1

STYLE 2:

PIN 1. GATE 2. DRAIN

DETAIL A ROTATED 90° CW

STYLE 1:

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON10527D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION: DPAK (SINGLE GAUGE)** PAGE 1 OF 1

BOTTOM VIEW

ALTERNATE CONSTRUCTIONS

STYLE 5:

STYLE 4:

PIN 1. CATHODE 2. ANODE

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ÓN Semiconductor does not convey any license under its patent rights nor the rights of others.