MJD41C (NPN), MJD42C (PNP)

Complementary Power Transistors

DPAK for Surface Mount Applications

Designed for general purpose amplifier and low speed switching applications.

Features

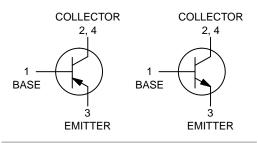
- Lead Formed for Surface Mount Applications in Plastic Sleeves (No Suffix)
- Straight Lead Version in Plastic Sleeves ("1" Suffix)
- Electrically Similar to Popular TIP41 and TIP42 Series
- Epoxy Meets UL 94 V-0 @ 0.125 in
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

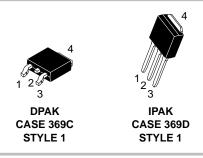
MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	100	Vdc
Collector-Base Voltage	V _{CB}	100	Vdc
Emitter-Base Voltage	V _{EB}	5	Vdc
Collector Current – Continuous	۱ _C	6	Adc
Collector Current – Peak	I _{CM}	10	Adc
Base Current	Ι _Β	2	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	20 0.16	W W/°C
Total Power Dissipation (Note 1) @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D	1.75 0.014	W ₩/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C
ESD – Human Body Model	HBM	3B	V
ESD – Machine Model	MM	С	V

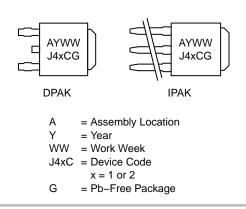
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. These ratings are applicable when surface mounted on the minimum pad sizes recommended.




ON Semiconductor®

www.onsemi.com


SILICON POWER TRANSISTORS 6 AMPERES 100 VOLTS, 20 WATTS

COMPLEMENTARY

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MJD41C (NPN), MJD42C (PNP)

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ ext{ heta}JC}$	6.25	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ hetaJA}$	71.4	°C/W

2. These ratings are applicable when surface mounted on the minimum pad sizes recommended.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	1
Collector–Emitter Sustaining Voltage (Note 3) $(I_{C} = 30 \text{ mAdc}, I_{B} = 0)$	V _{CEO(sus)}	100	-	Vdc
Collector Cutoff Current ($V_{CE} = 60 \text{ Vdc}, I_B = 0$)	I _{CEO}	_	50	μAdc
Collector Cutoff Current ($V_{CE} = 100 \text{ Vdc}, V_{EB} = 0$)	I _{CES}	_	10	μAdc
Emitter Cutoff Current ($V_{BE} = 5 Vdc$, $I_C = 0$)	I _{EBO}	_	0.5	mAdc
ON CHARACTERISTICS (Note 3)	• • •		•	•
DC Current Gain ($I_C = 0.3 \text{ Adc}, V_{CE} = 4 \text{ Vdc}$) ($I_C = 3 \text{ Adc}, V_{CE} = 4 \text{ Vdc}$)	h _{FE}	30 15	- 75	_
Collector–Emitter Saturation Voltage $(I_C = 6 \text{ Adc}, I_B = 600 \text{ mAdc})$	V _{CE(sat)}	_	1.5	Vdc
Base–Emitter On Voltage (I _C = 6 Adc, V _{CE} = 4 Vdc)	V _{BE(on)}	_	2	Vdc
DYNAMIC CHARACTERISTICS	·			
Current Gain – Bandwidth Product (Note 4) (I _C = 500 mAdc, V _{CE} = 10 Vdc, f _{test} = 1 MHz)	f _T	3	-	MHz
Small–Signal Current Gain (I _C = 0.5 Adc, V _{CE} = 10 Vdc, f = 1 kHz)	h _{fe}	20	-	-

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%. 4. $f_T = |h_{fe}| \bullet f_{test}$.

TYPICAL CHARACTERISTICS

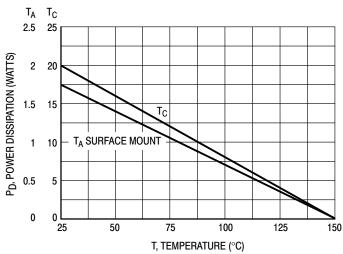


Figure 1. Power Derating

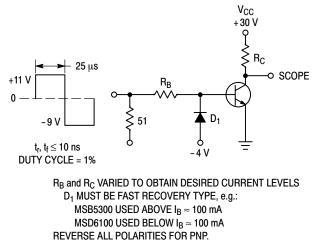


Figure 2. Switching Time Test Circuit

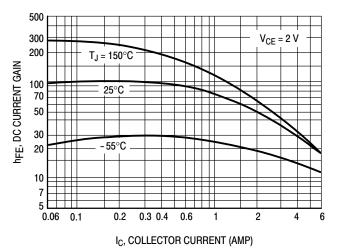


Figure 3. DC Current Gain

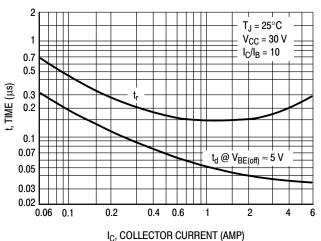
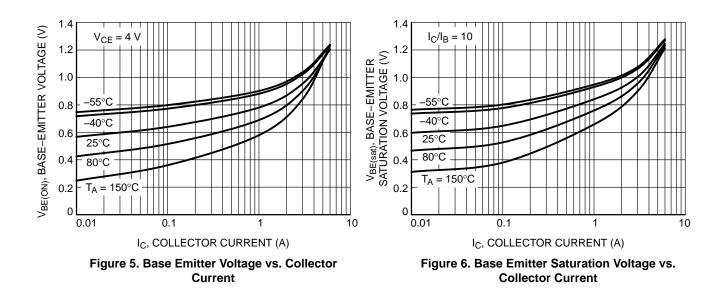



Figure 4. Turn–On Time

MJD41C (NPN), MJD42C (PNP)

TYPICAL CHARACTERISTICS

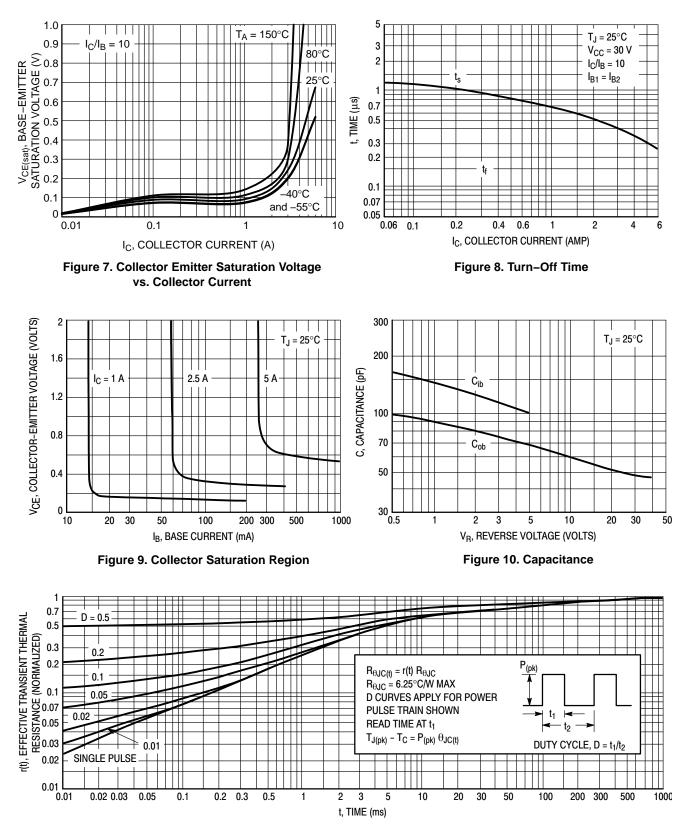


Figure 11. Thermal Response

MJD41C (NPN), MJD42C (PNP)

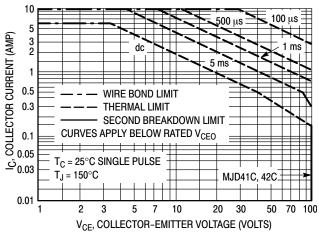
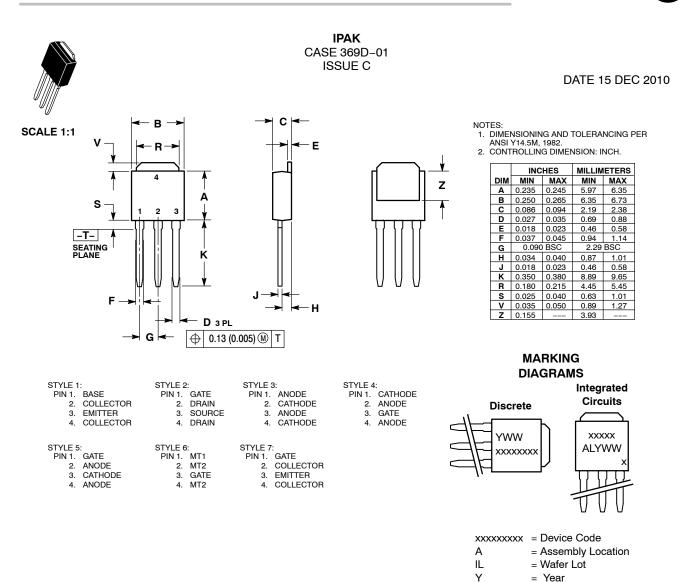


Figure 12. Maximum Forward Bias Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 12 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

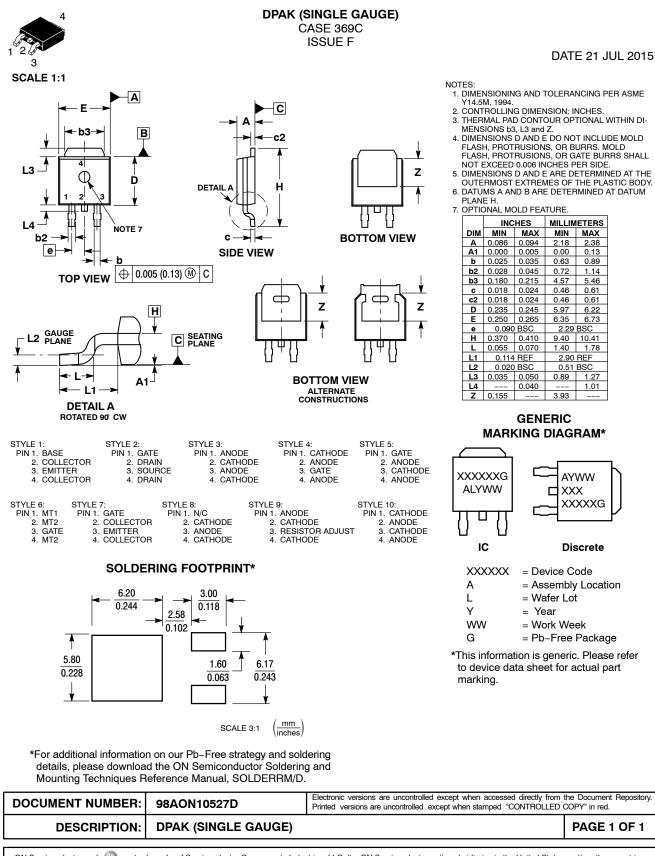

ORDERING INFORMATION

Device	Package Type	Package	Shipping [†]
MJD41CRLG	DPAK (Pb–Free)	369C	1,800 / Tape & Reel
MJD41CT4G	DPAK (Pb–Free)	369C	2,500 / Tape & Reel
NJVMJD41CT4G*	DPAK (Pb–Free)	369C	2,500 / Tape & Reel
MJD42CG	DPAK (Pb–Free)	369C	75 Units / Rail
MJD42C1G	IPAK (Pb–Free)	369D	75 Units / Rail
MJD42CRLG	DPAK (Pb–Free)	369C	1,800 / Tape & Reel
NJVMJD42CRLG*	DPAK (Pb–Free)	369C	1,800 / Tape & Reel
MJD42CT4G	DPAK (Pb–Free)	369C	2,500 / Tape & Reel
NJVMJD42CT4G*	DPAK (Pb–Free)	369C	2,500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable

ON


DOCUMENT NUMBER:	98AON10528D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	IPAK (DPAK INSERTION MOUNT)		PAGE 1 OF 1	
ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the				

WW

= Work Week

rights of others.

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights for the res.

© Semiconductor Components Industries, LLC, 2018