ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Dual Schmitt-Trigger Inverter

The NLU2G14 MiniGate[™] is an advanced high-speed CMOS dual Schmitt-trigger inverter in ultra-small footprint.

The NLU2G14 input and output structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.

The NLU2G14 can be used to enhance noise immunity or to square up slowly changing waveforms.

Features

- High Speed: $t_{PD} = 4.0 \text{ ns (Typ)} @ V_{CC} = 5.0 \text{ V}$
- Low Power Dissipation: $I_{CC} = 1 \mu A \text{ (Max)}$ at $T_A = 25^{\circ}\text{C}$
- Power Down Protection Provided on inputs
- Balanced Propagation Delays
- Overvoltage Tolerant (OVT) Input and Output Pins
- Ultra-Small Packages
- These are Pb-Free Devices

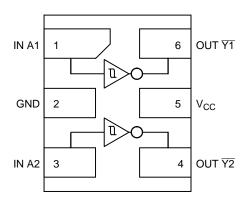


Figure 1. Pinout (Top View)

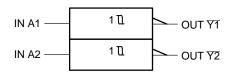


Figure 2. Logic Symbol

PIN ASSIGNMENT

1	IN A1
2	GND
3	IN A2
4	OUT Y2
5	V _{CC}
6	OUT Y1

FUNCTION TABLE

Α	Y
ΙΓ	ГΙ

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

UDFN6 1.0 x 1.0 CASE 517BX

UDFN6 1.2 x 1.0 CASE 517AA

UDFN6 1.45 x 1.0 CASE 517AQ

D = Device MarkingM = Date Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V	
V _{IN}	DC Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage		-0.5 to +7.0	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-20	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	±20	mA
I _O	DC Output Source/Sink Current	±12.5	mA	
I _{CC}	DC Supply Current Per Supply Pin	±25	mA	
I_{GND}	DC Ground Current per Ground Pin	±25	mA	
T _{STG}	Storage Temperature Range	-65 to +150	°C	
TL	Lead Temperature, 1 mm from Case for 10 Secon	260	°C	
TJ	Junction Temperature Under Bias	150	°C	
MSL	Moisture Sensitivity	Level 1		
F _R	Flammability Rating Oxygen	Index: 28 to 34	UL 94 V-0 @ 0.125 in	
I _{LATCHUP}	Latchup Performance Above V _{CC} and Below GNE	±500	mA	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.

2. Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	1.65	5.5	V
V _{IN}	Digital Input Voltage	0	5.5	V
V _{OUT}	Output Voltage	0	5.5	V
T _A	Operating Free–Air Temperature	-55	+125	°C
Δt/ΔV	Input Transition Rise or Fall Rate $ \begin{array}{c} \rm V_{CC} = 3.3 \ V \pm 0.3 \ V \\ \rm V_{CC} = 5.0 \ V \pm 0.5 \ V \\ \end{array} $	0	No Limit No Limit	ns/V

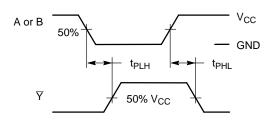
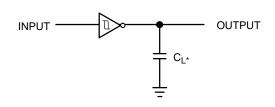
DC ELECTRICAL CHARACTERISTICS

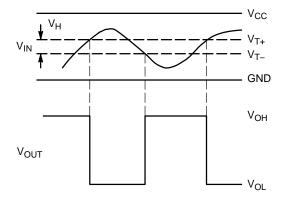
			V _{CC}		T _A = 25 °C		T _A = 25 °C		+85°C	T _A = -55°C to +125°C		
Symbol	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit	
V _{T+}	Positive Threshold Voltage		3.0 4.5 5.5	1.85 2.86 3.50	2.0 3.0 3.6	2.2 3.15 3.85		2.2 3.15 3.85		2.2 3.15 3.85	V	
V _{T-}	Negative Threshold Voltage		3.0 4.5 5.5	0.9 1.35 1.65	1.5 2.3 2.9	1.65 2.46 3.05	0.9 1.35 1.65		0.9 1.35 1.65		V	
V _H	Hysteresis Voltage		3.0 4.5 5.5	0.30 0.40 0.50	0.57 0.67 0.74	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	V	
V _{OH}	Minimum High-Level Output	$V_{IN} \le V_{T-MIN}$ $I_{OH} = -50 \mu\text{A}$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V	
	Voltage	$V_{IN} \le V_{T-MIN}$ $I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66			
V _{OL}	Maximum Low-Level Output Voltage	$V_{IN} \ge V_{T+MAX}$ $I_{OL} = 50 \mu A$	2.0 3.0 4.5		0 0 0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V	
	vollage	$V_{IN} \ge V_{T+MAX}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52		
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	0 to 5.5			±0.1		±1.0		±1.0	μΑ	
I _{CC}	Quiescent Supply Current	$0 \le V_{IN} \le V_{CC}$	5.5			1.0		10		40	μΑ	

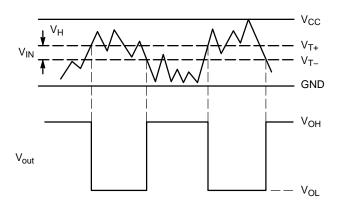
AC ELECTRICAL CHARACTERISTICS (Input $t_f = t_f = 3.0 \text{ ns}$)

		V _{CC}	Test		T _A = 25 °	С	T _A =	+85°C	T _A = -5 +12	55°C to 5°C	
Symbol	Parameter	(V)	Condition	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	3.0 to	C _L = 15 pF		7.0	12.8	1.0	15	1.0	17	ns
t _{PHL}	Input Ā to Output ₹	3.6	C _L = 50 pF		8.5	16.3	1.0	18.5	1.0	20.5	i
		4.5 to	C _L = 15 pF		4.0	8.6	1.0	10	1.0	11.5	
		5.5	C _L = 50 pF		5.5	10.6	1.0	12	1.0	13.5	
C _{IN}	Input Capacitance				5.0	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (Note 3)	5.0			7.0						pF

^{3.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation $I_{CC(OPR)} = C_{PD} \cdot V_{CC} \cdot f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption: $P_D = C_{PD} \cdot V_{CC}^2 \cdot f_{in} + I_{CC} \cdot V_{CC}$.


Figure 3. Switching Waveforms



*Includes all probe and jig capacitance.

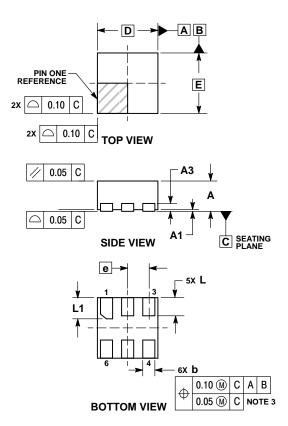
A 1-MHz square input wave is recommended for propagation delay tests.

Figure 4. Test Circuit

(a) A Schmitt-Trigger Squares Up Inputs With Slow Rise and Fall Times

(b) A Schmitt-Trigger Offers Maximum Noise Immunity

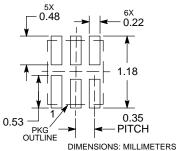
Figure 5. Typical Schmitt-Trigger Applications


ORDERING INFORMATION

Device	Package	Shipping [†]
NLU2G14MUTCG	UDFN6, 1.2 x 1.0, 0.4P (Pb-Free)	3000 / Tape & Reel
NLU2G14AMUTCG (In Development)	UDFN6, 1.45 x 1.0, 0.5P (Pb-Free)	3000 / Tape & Reel
NLU2G14CMUTCG (In Development)	UDFN6, 1.0 x 1.0, 0.35P (Pb-Free)	3000 / Tape & Reel

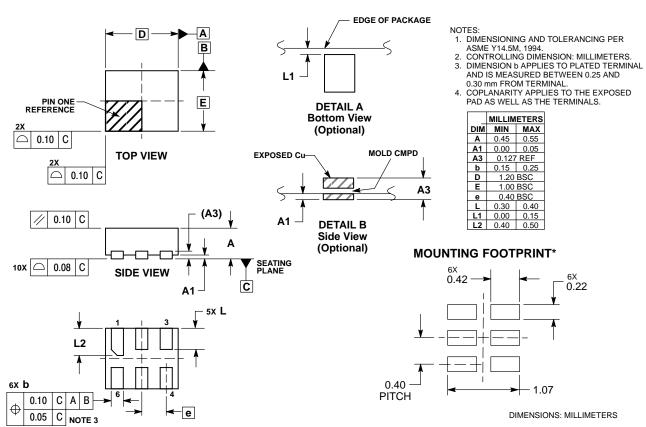
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


UDFN6 1.0x1.0, 0.35P CASE 517BX ISSUE O

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP.
 PACKAGE DIMENSIONS EXCLUSIVE OF
- BURRS AND MOLD FLASH.

	-					
	MILLIMETERS					
DIM	MIN	MAX				
Α	0.45	0.55				
A1	0.00	0.05				
A3	0.13 REF					
b	0.12	0.22				
D	1.00	BSC				
E	1.00 BSC					
е	0.35 BSC					
L	0.25	0.35				
L1	0.30 0.40					


RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

UDFN6, 1.2x1.0, 0.4P CASE 517AA ISSUE C

BOTTOM VIEW

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.