ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Triple Inverter

NL37WZ04

The NL37WZ04 is a high performance triple inverter operating from a 1.65 V to 5.5 V supply.

Features

- Designed for 1.65 V to 5.5 V V_{CC} Operation
- 2.3 ns t_{PD} at V_{CC} = 5 V (Typ)
- Inputs/Outputs Overvoltage Tolerant up to 5.5 V
- IOFF Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.0 V
- Available in US8, UDFN8 and UQFN8 Packages
- Chip Complexity < 100 FETs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

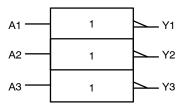
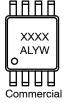
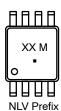


Figure 1. Logic Symbol


ON Semiconductor®

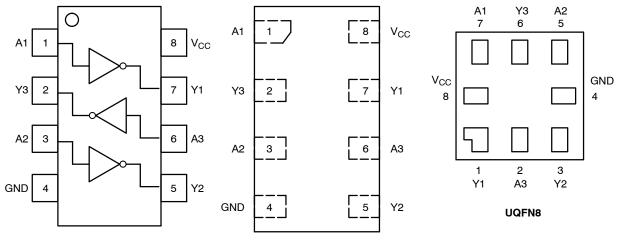

www.onsemi.com

MARKING DIAGRAMS

US8 US SUFFIX CASE 493

UDFN8, 1.45x1.0 MU3 SUFFIX CASE 517BZ

XX M=


1

UDFN8, 1.95x1.0 MU1 SUFFIX CASE 517CA 1 UQFN8, 1.4x1.2 MQ2 SUFFIX CASE 523AS 1 UQFN8, 1.6x1.6

		CASE 523AN	
1			
X, XX, >	XXX	= Specific Device C	ode
А		= Assembly Location	n
L		= Lot Code	
Y		= Year Code	
W		= Week Code	
Μ		= Date Code	
-		= Pb-Free Package	Э

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

US8

UDFN8

Figure 2. Pinout

PIN ASSIGNMENT

FUNCTION TABLE

A Input	Y Output
L	Н
Н	L

	PINASSIGNMENT					
US8 / UDFN8	UQFN8					
A1	Y1					
Y3	A3					
A2	Y2					
GND	GND					
Y2	A2					
A3	Y3					
Y1	A1					
V _{CC}	V _{CC}					
	A1 Y3 A2 GND Y2 A3 Y1					

MAXIMUM RATINGS

Symbol	Characteristi	cs	Value	Unit
V _{CC}	DC Supply Voltage	NLV	−0.5 to +7.0 −0.5 to +6.5	V
V _{IN}	DC Input Voltage	NLV	−0.5 to +7.0 −0.5 to +6.5	V
V _{OUT}	DC Output Voltage (NLV)	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +7.0 -0.5 to +7.0	V
Ī	DC Output Voltage	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +6.5 -0.5 to +6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
I _{OUT}	DC Output Source/Sink Current		±50	mA
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground	Pin	±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 set	cs	260	°C
ТJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 2)	US8 UQFN8 UDFN8	250 210 231	°C/W
P _D	Power Dissipation in Still Air	US8 UQFN8 UDFN8	500 595 541	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V_{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Applicable to devices with outputs that may be tri-stated.

 Applicable to devices with outputs that hidy be in-stated.
 Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7.
 HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22–A115–A (Machine Model) be discontinued per JEDEC/JEP172A. 4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Cha	aracteristics	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage		1.65	5.5	V
V _{IN}	DC Input Voltage		0	5.5	V
V _{OUT}	DC Output Voltage	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	0 0 0	V _{CC} 5.5 5.5	
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise and Fall Time (NLV)	V _{CC} = 3.0 V to 3.6 V V _{CC} = 4.5 V to 5.5 V	0 0	100 20	ns/V
	Input Rise and Fall Time	$\begin{array}{l} V_{CC} = 1.65 \ V \ \text{to} \ 1.95 \ \text{V} \\ V_{CC} = 2.3 \ \text{V} \ \text{to} \ 2.7 \ \text{V} \\ V_{CC} = 3.0 \ \text{V} \ \text{to} \ 3.6 \ \text{V} \\ V_{CC} = 4.5 \ \text{V} \ \text{to} \ 5.5 \ \text{V} \end{array}$	0 0 0	20 20 10 5	

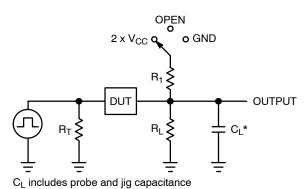
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	T,	م = 25°0	C	–55°C ≤ T	A ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Units
VIH	High-Level Input		1.65 to 1.95	0.65 V _{CC}	-	-	0.65 V _{CC}	-	V
Voltage		2.3 to 5.5	0.70 V _{CC}	-	-	0.70 V _{CC}	-		
VIL	Low-Level Input		1.65 to 1.95	-	-	0.35 V _{CC}	-	0.35 V _{CC}	V
	Voltage		2.3 to 5.5	-	-	0.30 V _{CC}	-	0.30 V _{CC}	1
V _{OH}	High-Level Output Voltage		1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8	V _{CC} 1.4 2.1 2.4 2.7 2.5 4.0		V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8	- - - - - -	V
V _{OL}	Low-Level Output Voltage		1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	- - - - -	- 0.08 0.2 0.22 0.28 0.38 0.42	0.1 0.24 0.3 0.4 0.4 0.55 0.55	- - - - - -	0.1 0.24 0.3 0.4 0.4 0.55 0.55	V
I _{IN}	Input Leakage Current	V_{IN} = 5.5 V or GND	1.65 to 5.5	-	-	±0.1	-	±1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0	-	-	1.0	-	10	μΑ
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5	-	-	1.0	-	10	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

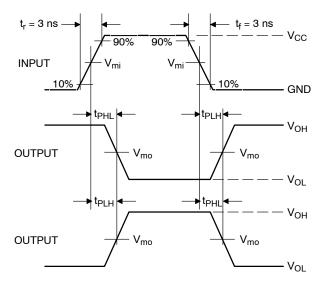
AC ELECTRICAL CHARACTERISTICS


				٦	Γ _A = 25°C	2	T _A = -55	to 125°C	
Symbol	Parameter	V _{CC} (V)	Test Conditions	Min	Тур	Max	Min	Max	Units
t _{PLH} , Propagation Delay,	1.65 to 1.95	C _L = 15 pF	-	4.4	9.5	-	10.0	ns	
t _{PHL}	A to Y	2.3 to 2.7	R _L = 1 MΩ R ₁ = Open	-	5.0	5.7	-	6.1	
		3.0 to 3.6		_	2.2	3.4	-	3.8	
		4.5 to 5.5		-	1.8	2.8	-	3.1	
		3.0 to 3.6	$C_{L} = 50 \text{ pF},$	-	3.9	4.5	-	5.0	
		4.5 to 5.5	R_L^- = 500 Ω , R_1 = Open	-	2.3	3.6	-	4.0	

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/2 (per flip–flop). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{OUT}	Output Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{PD}	Power Dissipation Capacitance (Note 6)	10 MHz, V _{CC} = 3.3 V, V _{IN} = 0 V or V _{CC} 10 MHz, V _{CC} = 5.5 V, V _{IN} = 0 V or V _{CC}	9 11	pF


6. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

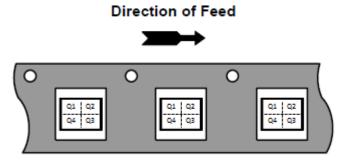
Test	Switch Position	C _L , pF	R_{L}, Ω	R ₁ , Ω		
t _{PLH} / t _{PHL}	Open	See AC Characteristics Table				
t _{PLZ} / t _{PZL}	$2 \times V_{CC}$	50	500	500		
t _{PHZ} / t _{PZH}	GND	50	500	500		
X = Don't Care						

 R_T is Z_{OUT} of pulse generator (typically 50 Ω) f = 1 MHz

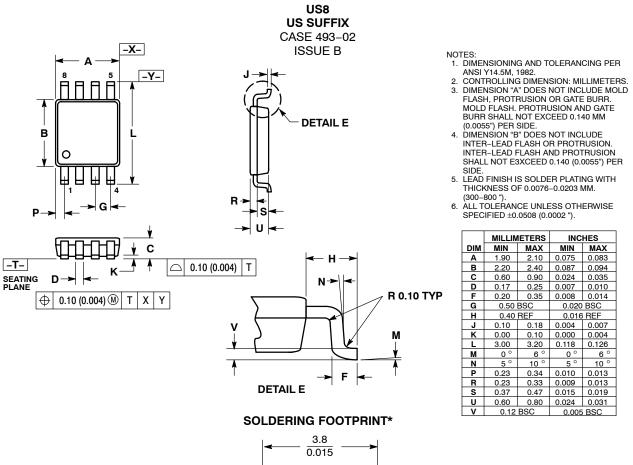
Figure 3. Test Circuit

Figure 4. Switching Waveforms

		V _{mo} , V		
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t _{PZL} , t _{PLZ} , t _{PZH} , t _{PHZ}	V _Y , V
1.65 to 1.95	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.15
2.3 to 2.7	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.15
3.0 to 3.6	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3
4.5 to 5.5	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3


DEVICE ORDERING INFORMATION

Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping [†]
NL37WZ04USG	US8	L5	Q4	3000 / Tape & Reel
NLV37WZ04USG*	US8	L5	Q4	3000 / Tape & Reel
NL37WZ04MQ1TCG (In Development)	UQFN8, 1.6 x 1.6, 0.5P	TBD	TBD	3000 / Tape & Reel
NL37WZ04MU1TCG (In Development)	UDFN8, 1.95 x 1.0, 0.5P	TBD	TBD	3000 / Tape & Reel
NL37WZ04MU3TCG (In Development)	UDFN8, 1.45 x 1.0, 0.35P	TBD	TBD	3000 / Tape & Reel
NL37WZ04MQ2TCG (In Development)	UQFN8, 1.4 x 1.2, 0.4P	TBD	TBD	3000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

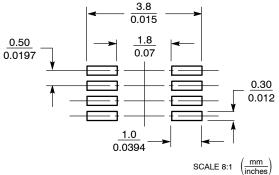
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

Pin 1 Orientation in Tape and Reel

PACKAGE DIMENSIONS

MILLIMETERS INCHES DIM MIN MAX MIN MAX А 1.90 2.10 0.075 0.083 в 2.20 2.40 0.90 0.087 0.094 С 0.60 0.024 0.035 D 0.007 0.010 0.17 0.25 0.008 0.014 0.020 BSC F 0.20 0.35 G H 0.50 BSC 0.40 REF 0.016 REF 0.10 0.18 0.004 0.007 J K 0.00 0.10 0.000 0.004 3.00 3.20 0.118 0.126 М 0 6 0 6 Ν 10 10 ° 5 Р 0.23 0.34 0.010 0.013 R 0.33 0.009 0.013 0.23 S 0.37 0.47 0.015 0.019 U 0.60 0.80 0.024 0.031

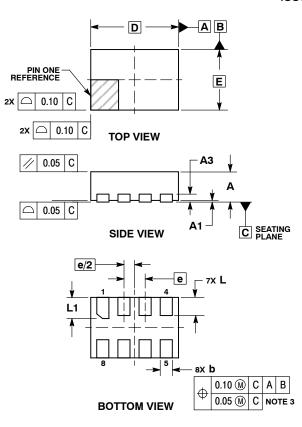
0.005 BSC

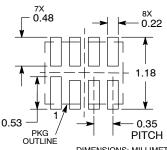

0.12 BSC

v

SHALL NOT E3XCEED 0.140 (0.0055") PER

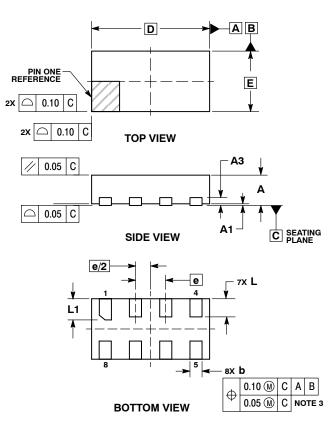
THICKNESS OF 0.0076-0.0203 MM.


SPECIFIED ±0.0508 (0.0002 ").


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

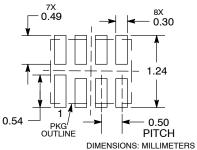
UDFN8, 1.45x1, 0.35P CASE 517BZ ISSUE O


NOTES: 1. DIMENSIONING AND TOLERANCING PER Simerosioning and Doleranding FER ASME V14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. PACKAGE DIMENSIONS EXCLUSIVE OF 4 BURRS AND MOLD FLASH. MILLIMETERS DIM MIN MAX A A1 0.45 0.55 0.00 0.05 0.13 REF A3 b 0.15 0.25 D 1.45 BSC 1.00 BSC 0.35 BSC е L L1 0.25 0.35 0.30 0.40 RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

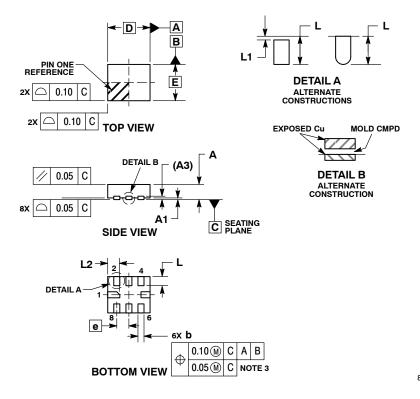
UDFN8, 1.95x1, 0.5P CASE 517CA ISSUE O

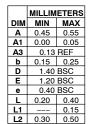


NOTES:

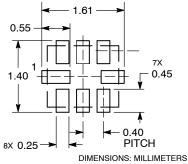
- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION b APPLIES TO PLATED TERMINAL AND 19 MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP.
 PACKAGE DIMENSIONS EXCLUSIVE OF BUIDES AND MOL D ELASH ASH.

BURRS AND MOLD FL					
	MILLIN	MILLIMETERS			
DIM	MIN	MAX			
Α	0.45	0.55			
A1	0.00 0.05				
A3	0.13	0.13 REF			
b	0.15	0.25			
D	1.95	BSC			
Е	1.00	BSC			
е	0.50	BSC			
L	0.25 0.35				
L1	0.30	0.40			
	A A1 A3 b D E	DIM MIN A 0.45 A1 0.00 A3 0.13 b 0.15 D 1.95 E 1.00 e 0.50 L 0.25	DIM MIN MAX A 0.45 0.55 A1 0.00 0.05 A3 0.13 REF b 0.15 0.25 D 1.95 BSC E 1.00 BSC e 0.50 BSC L 0.25 0.35		


RECOMMENDED **SOLDERING FOOTPRINT***


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


UQFN8, 1.4x1.2, 0.4P CASE 523AS **ISSUE A**

NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25 mm FROM THE TERMINAL TIP.

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.