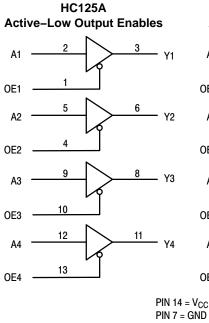
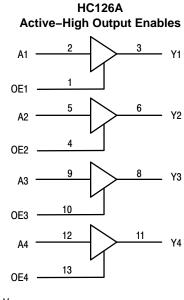
MC74HC125A, MC74HC126A

Quad 3-State Noninverting Buffers

High–Performance Silicon–Gate CMOS


The MC74HC125A and MC74HC126A are identical in pinout to the LS125 and LS126. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.


The HC125A and HC126A noninverting buffers are designed to be used with 3-state memory address drivers, clock drivers, and other bus-oriented systems. The devices have four separate output enables that are active-low (HC125A) or active-high (HC126A).

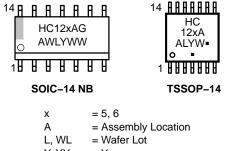
Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 µA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the JEDEC Standard No. 7 A Requirements
- Chip Complexity: 72 FETs or 18 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

LOGIC DIAGRAM

ON Semiconductor®

http://onsemi.com


SOIC-14 NB D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX **CASE 948G**

PIN ASSIGNMENT

OE1	1●	14	v _{cc}
A1 [2	13	0E4
Y1 [3	12	D A4
OE2	4	11] Y4
A2 [5	10	ОЕЗ
Y2 [6	9] A3
GND [7	8] Y3
			ł

MARKING DIAGRAMS

- Y, YY = Year
- = Work Week W. WW
- G or = Pb-Free Package

(Note: Microdot may be in either location)

FUNCTION TABLE

	HC125A			HC126A				
Inp	outs	Output		Inputs		Inputs		Output
Α	OE	Y		Α	OE	Y		
н	L	н		н	н	н		
L	L	L		L	Н	L		
Х	Н	Z		Х	L	Z		

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
I _{out}	DC Output Current, per Pin	±35	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±75	mA
P _D	Power Dissipation in Still Air SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds (SOIC or TSSOP Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating: SOIC Package: -7 mW/°C from 65° to 125°C

TSSOP Package: -6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

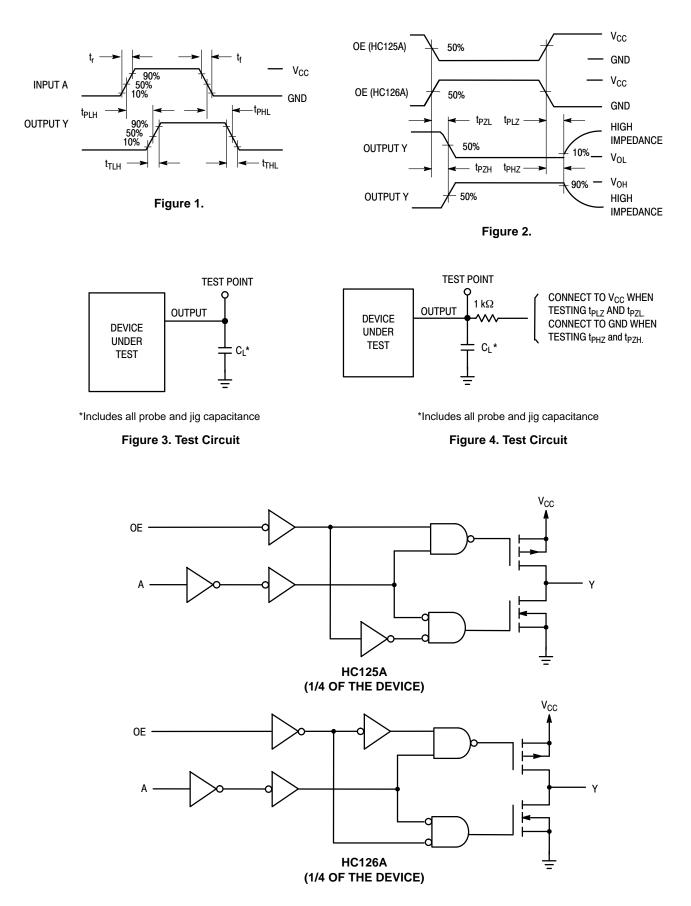
Symbol	Parameter		Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)		0	V _{CC}	V
T _A	Operating Temperature, All Package Types		-55	+125	°C
t _r , t _f	(Figure 1) V _{CC}	= 2.0 V = 4.5 V = 6.0 V	0 0 0	1000 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

MC74HC125A, MC74HC126A

				Gu	aranteed Li	mit		
Symbol	Parameter	Test Conditions	v _{cc} v	–55 to 25°C	≤ 85°C	≤ 125°C	Unit	
VIH	Minimum High-Level Input Voltage	$V_{out} = V_{CC} - 0.1 V$	2.0	1.5	1.5	1.5	V	
		$ I_{out} \le 20 \mu A$	3.0	2.1	2.1	2.1		
			4.5	3.15	3.15	3.15		
			6.0	4.2	4.2	4.2		
VIL	Maximum Low-Level Input Voltage	$V_{out} = 0.1 V$	2.0	0.5	0.5	0.5	V	
		$ I_{out} \le 20 \mu A$	3.0	0.9	0.9	0.9		
			4.5	1.35	1.35	1.35		
			6.0	1.8	1.8	1.8		
V _{OH}	Minimum High–Level Output	$V_{in} = V_{IH}$	2.0	1.9	1.9	1.9	V	
	Voltage	$ I_{out} \le 20 \mu A$	4.5	4.4	4.4	4.4		
			6.0	5.9	5.9	5.9		
		$V_{in} = V_{IH}$ $ I_{out} \le 3.6 \text{ mA}$	3.0	2.48	2.34	2.2		
		$ I_{out} \le 6.0 \text{ mA}$	4.5	3.98	3.84	3.7		
		$ I_{out} \le 7.8 \text{ mA}$	6.0	5.48	5.34	5.2		
V _{OL}	Maximum Low-Level Output	$V_{in} = V_{IL}$	2.0	0.1	0.1	0.1	V	
	Voltage	$ I_{out} \le 20 \ \mu A$	4.5	0.1	0.1	0.1		
			6.0	0.1	0.1	0.1		
		$V_{in} = V_{IL}$ $ I_{out} \le 3.6 \text{ mA}$	3.0	0.26	0.33	0.4		
		$ I_{out} \le 6.0 \text{ mA}$	4.5	0.26	0.33	0.4		
		$ I_{out} \le 7.8 \text{ mA}$	6.0	0.26	0.33	0.4		
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μA	
I _{OZ}	Maximum Three–State Leakage	Output in High–Impedance State	6.0	±0.5	±5.0	±10	μA	
	Current	$V_{in} = V_{IL} \text{ or } V_{IH}$						
		$V_{out} = V_{CC}$ or GND						
I _{CC}	Maximum Quiescent Supply Current	$V_{in} = V_{CC} \text{ or } GND$	6.0	4.0	40	160	μA	
	(per Package)	$I_{out} = 0 \ \mu A$]		

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)


AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6.0 \text{ ns}$)

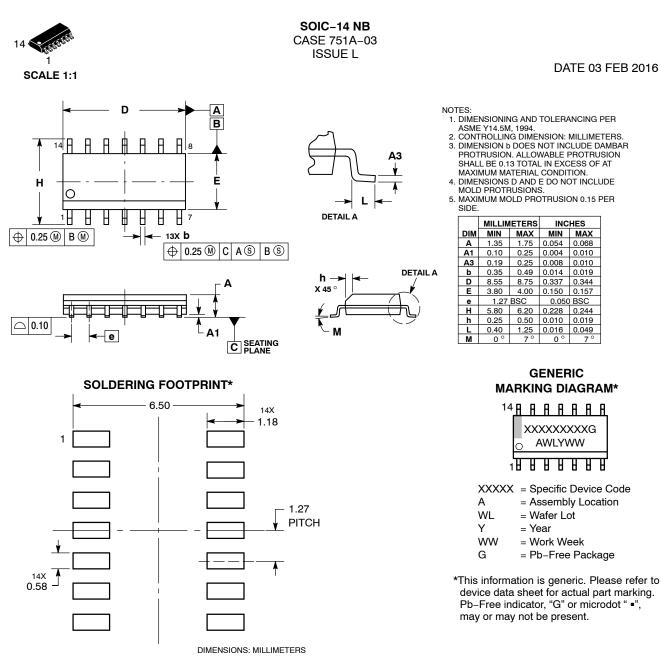
			Guaranteed Limit			
Symbol	Parameter	v _{cc} v	–55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PLH} ,	Maximum Propagation Delay, Input A to Output Y	2.0	90	115	135	ns
t _{PHL}	(Figures 1 and 3)	3.0	36	45	60	
		4.5	18	23	27	
		6.0	15	20	23	
t _{PLZ} ,	Maximum Propagation Delay, Output Enable to Y	2.0	120	150	180	ns
t _{PHZ}	(Figures 2 and 4)	3.0	45	60	80	
		4.5	24	30	36	
		6.0	20	26	31	
t _{PZL} ,	Maximum Propagation Delay, Output Enable to Y	2.0	90	115	135	ns
t _{PZH}	(Figures 2 and 4)	3.0	36	45	60	
		4.5	18	23	27	
		6.0	15	20	23	
t _{TLH} ,	Maximum Output Transition Time, Any Output	2.0	60	75	90	ns
t _{THL}	(Figures 1 and 3)	3.0	22	28	34	
		4.5	12	15	18	
		6.0	10	13	15	
C _{in}	Maximum Input Capacitance	-	10	10	10	pF
Cout	Maximum 3-State Output Capacitance (Output in High-Impedance State)	-	15	15	15	pF
			Typical @ 25°C, V _{CC} = 5.0 V		_C = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Buffer)*			30		pF

* Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

MC74HC125A, MC74HC126A

SWITCHING WAVEFORMS

MC74HC125A, MC74HC126A


ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC125ADG	SOIC-14 NB (Pb-Free)	55 Units / Rail
MC74HC125ADR2G	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
MC74HC125ADTG	TSSOP-14 (Pb-Free)	96 Units / Rail
MC74HC125ADTR2G	TSSOP-14 (Pb-Free)	2500 / Tape & Reel
MC74HC126ADG	SOIC-14 NB (Pb-Free)	55 Units / Rail
MC74HC126ADR2G	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
MC74HC126ADTR2G	TSSOP-14 (Pb-Free)	2500 / Tape & Reel
NLV74HC125ADG*	SOIC-14 NB (Pb-Free)	55 Units / Rail
NLV74HC125ADR2G*	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
NLV74HC125ADTG*	TSSOP-14 (Pb-Free)	55 Units / Rail
NLV74HC125ADTR2G*	TSSOP-14 (Pb-Free)	2500 / Tape & Reel
NLV74HC126ADR2G*	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
NLV74HC126ADTR2G*	TSSOP-14 (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2		
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or acidental damages. ON Semiconductor does not convey any license under	or guarantee regarding or circuit, and specifically		

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2				
ON Semiconductor and image trademarks of Semiconductor Components Industries LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries							

ON Semiconductor and united states and/or other countries. LC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

may or may not be present.

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repose Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1		
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically		

DIMENSIONS: MILLIMETERS

© Semiconductor Components Industries, LLC, 2019