ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Octal 3-State Noninverting D Flip-Flop

High-Performance Silicon-Gate CMOS

The MC74HC574A is identical in pinout to the LS574. The device inputs are compatible with standard CMOS outputs; with pull-up resistors, they are compatible with LSTTL outputs.

Data meeting the set—up time is clocked to the outputs with the rising edge of the Clock. The Output Enable input does not affect the states of the flip—flops but when Output Enable is high, all device outputs are forced to the high—impedance state. Thus, data may be stored even when the outputs are not enabled.

The HC574A is identical in function to the HC374A but has the flip-flop inputs on the opposite side of the package from the outputs to facilitate PC board layout.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 266 FETs or 66.5 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

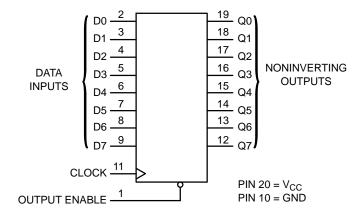
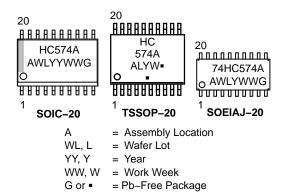


Figure 1. Logic Diagram

ON Semiconductor®

http://onsemi.com

SOIC-20 DW SUFFIX CASE 751D


DT SUFFIX CASE 948E

SOEIAJ-20 F SUFFIX CASE 967

PIN ASSIGNMENT

OUTPUT			_
ENABLE	10	20	□ V _{CC}
D0 🗀	2	19	□ Q0
D1 🗀	3	18	□ Q1
D2	4	17	□ Q2
D3 🗀	5	16	□ Q3
D4 🗀	6	15	
D5 □	7	14	□ Q5
D6 🗀	8	13	□ Q6
D7 <u></u>	9	12	□ Q7
GND □	10	11	□ сгоск

MARKING DIAGRAMS

(Note: Microdot may be in either location) FUNCTION TABLE

	Inputs		
OE	Clock	D	Q
L	_	Н	Н
L		L	L
L	L,H,⁻∕∟	Χ	No Change
Н	Х	Χ	Z

X = Don't CareZ = High Impedance

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Design Criteria	Value	Units
Internal Gate Count*	66.5	ea.
Internal Gate Propagation Delay	1.5	ns
Internal Gate Power Dissipation	5.0	μW
Speed Power Product	0.0075	рЈ

^{*}Equivalent to a two-input NAND gate.

MAXIMUM RATINGS

Symbol	F	Parameter	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
VI	DC Input Voltage		–0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	(Note 1)	–0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current		±20	mA
I _{OK}	DC Output Diode Current		±35	mA
Io	DC Output Sink Current		±35	mA
I _{CC}	DC Supply Current per Supply Pin		±75	mA
I _{GND}	DC Ground Current per Ground Pin		±75	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case	for 10 Seconds	260	°C
TJ	Junction Temperature under Bias		+150	°C
$\theta_{\sf JA}$	Thermal Resistance	SOIC TSSOP	96 128	°C/W
P _D	Power Dissipation in Still Air at 85°C	SOIC TSSOP	500 450	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	> 4000 > 300 > 1000	V
I _{Latchup}	Latchup Performance	Above V _{CC} and Below GND at 85°C (Note 5)	±300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. I_O absolute maximum rating must be observed.
- 2. Tested to EIA/JESD22-A114-A.
- 3. Tested to EIA/JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	DC Supply Voltage	(Referenced to GND)	2.0	6.0	V
V _I , V _O	DC Input Voltage, Output Voltage	(Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types		-55	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 2)	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	0 0 0	1000 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

6. Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

			v_{cc}	Guaranteed Limit			
Symbol	Parameter	Test Conditions	V	-55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$\begin{aligned} V_{out} &= V_{CC} - 0.1 \text{ V} \\ I_{out} &\leq 20 \mu\text{A} \end{aligned}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low–Level Input Voltage	$V_{out} = 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
V _{OH}	Minimum High-Level Output Voltage	$\begin{aligned} V_{in} = V_{IH} & I_{out} \leq 2.4 \text{ mA} \\ I_{out} \leq 6.0 \text{ mA} \\ I_{out} \leq 7.8 \text{ mA} \end{aligned}$	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.2 3.7 5.2	V
V _{OL}	Maximum Low–Level Output Voltage	$V_{in} = V_{IL}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$\begin{aligned} V_{in} = V_{IL} & I_{out} \leq 2.4 \text{ mA} \\ I_{out} \leq 6.0 \text{ mA} \\ I_{out} \leq 7.8 \text{ mA} \end{aligned}$	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.4 0.4 0.4	
I _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
I _{OZ}	Maximum Three–State Leakage Current	Output in High–Impedance State $V_{in} = V_{IL}$ or V_{IH} $V_{out} = V_{CC}$ or GND	6.0	±0.5	±5.0	±10	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	V _{in} = V _{CC} or GND I _{out} = 0 μA	6.0	4.0	40	160	μΑ

AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF; Input t_r = t_f = 6.0 ns)

		V _{CC}	Guara			
Symbol	Parameter	V	-55 to 25°C	≤ 85°C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 2 and 5)	2.0 3.0 4.5 6.0	6.0 15 30 35	4.8 10 24 28	4.0 8.0 20 24	MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Clock to Q (Figures 2 and 5)	2.0 3.0 4.5 6.0	160 105 32 27	200 145 40 34	240 190 48 41	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Q (Figures 3 and 6)	2.0 3.0 4.5 6.0	150 100 30 26	190 125 38 33	225 150 45 38	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Q (Figures 3 and 6)	2.0 3.0 4.5 6.0	140 90 28 24	175 120 35 30	210 140 42 36	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, any Output (Figures 2 and 5)	2.0 3.0 4.5 6.0	60 27 12 10	75 32 15 13	90 36 18 15	ns
C _{in}	Maximum Input Capacitance	l .	10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance, Output in High-li State	mpedance	15	15	15	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Enabled Output)*	24	pF

^{*}Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

TIMING REQUIREMENTS ($C_L = 50 \text{ pF}$; Input $t_f = t_f = 6.0 \text{ ns}$)

					(Suarante	ed Limi	t		
			V _{CC}	–55 to	25°C	≤ 85	5°C	≤ 12	5°C	
Symbol	Parameter	Figure	Volts	Min	Max	Min	Max	Min	Max	Unit
t _{su}	Minimum Setup Time, Data to Clock	4	2.0 3.0 4.6 6.0	50 40 10 9.0		65 50 13 11		75 60 15 13		ns
t _h	Minimum Hold Time, Clock to Data	4	2.0 3.0 4.5 6.0	5.0 5.0 5.0 5.0		5.0 5.0 5.0 5.0		5.0 5.0 5.0 5.0		ns
t _w	Minimum Pulse Width, Clock	2	2.0 3.0 4.5 6.0	75 60 15 13		95 80 19 16		110 90 22 19		ns
t _r , t _f	Maximum Input Rise and Fall Times	2	2.0 3.0 4.5 6.0		1000 800 500 400		1000 800 500 400		1000 800 500 400	ns

SWITCHING WAVEFORMS

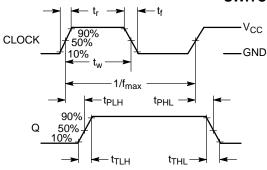
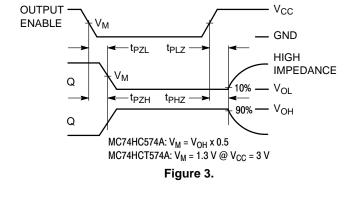



Figure 2.

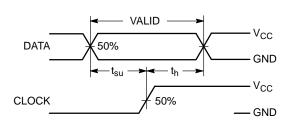
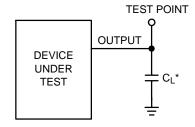
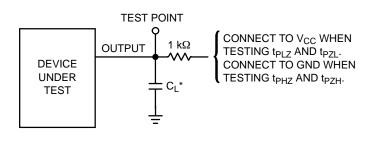




Figure 4.

^{*}Includes all probe and jig capacitance.

Figure 5.

*Includes all probe and jig capacitance.

Figure 6. Test Circuit

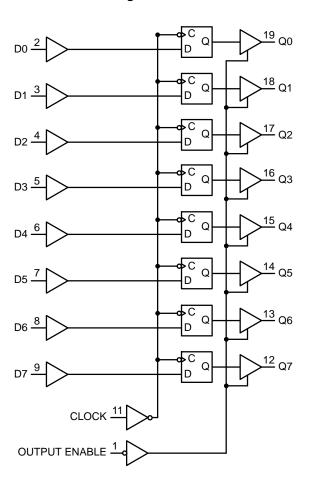
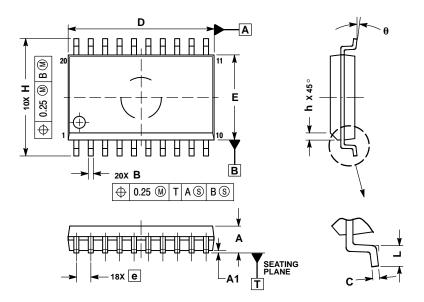


Figure 7. Expanded Logic Diagram

ORDERING INFORMATION

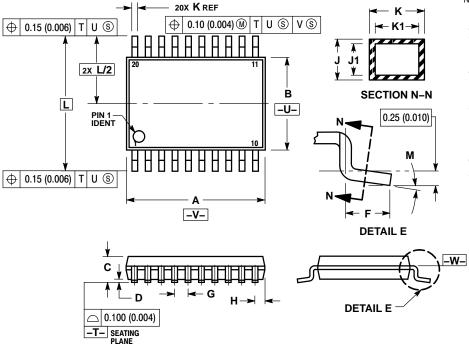

Device	Package	Shipping [†]
MC74HC574ADWG	SOIC-20 WIDE (Pb-Free)	38 Units / Rail
MC74HC574ADWR2G	SOIC-20 WIDE (Pb-Free)	1000 Tape & Reel
MC74HC574ADTR2G	TSSOP-20 (Pb-Free)	2500 Tape & Reel
NLV74HC574ADTR2G*	TSSOP-20 (Pb-Free)	2500 Tape & Reel
MC74HC574AFELG	SOEIAJ-20 (Pb-Free)	2000 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

PACKAGE DIMENSIONS

SOIC-20 **DW SUFFIX** CASE 751D-05 ISSUE G

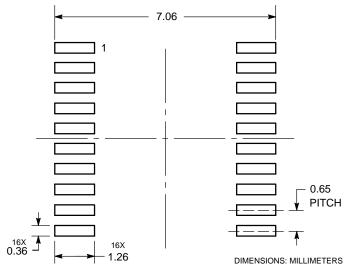


- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35	0.49		
C	0.23	0.32		
D	12.65	12.95		
E	7.40	7.60		
е	1.27	BSC		
Н	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
θ	0°	7 °		

PACKAGE DIMENSIONS

TSSOP-20 **DT SUFFIX** CASE 948E-02 **ISSUE C**



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEPD 0.25 (0.010) PER SIDE. SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE
- DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
 DIMENSION AT MAXIMUM MATERIAL CONDITION.

 6. TERMINAL NUMBERS ARE SHOWN FOR
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	6.40	6.60	0.252	0.260
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	BSC
Н	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40		0.252 BSC	
M	0°	8°	0°	8°

SOLDERING FOOTPRINT* 7.06

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.