GaN Power Transistor, 28 V, 45 W DC - 4 GHz

NPT1004D

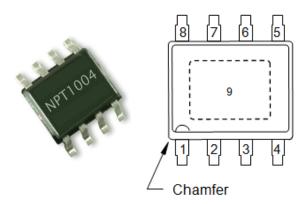
Rev. V1

Features

- Optimized for Pulsed, WiMAX, W-CDMA, LTE, & other light thermal load applications from DC - 4 GHz
- 2.5 GHz Performance
- 45 W P3dB CW Power
- 13.5 dB Small Signal Gain
- 55% Efficiency @ P3dB
- 100% RF Tested
- Thermally-Enhanced Surface Mount SOIC Package
- High Reliability Gold Metallization Process
- Subject to EAR99 Export Control
- RoHS* Compliant

Applications

- Defense Communications
- Land Mobile Radio
- Avionics
- Wireless Infrastructure
- ISM
- VHF/UHF/L/S-Band Radar


Description

The NPT1004 GaN HEMT is a power transistor optimized for DC - 4 GHz operation. This device supports CW, pulsed, and linear operation with output power levels to 45 W. This transistor is assembled in an industry standard surface mount plastic package.

Ordering Information

Part Number	Package
NPT1004DT	Tube (97 pieces)
NPT1004DR	1500 piece reel

Functional Schematic

Pin Configuration

Pin#	Function
1 - 4	Gate
5 - 8	Drain
9	Paddle ¹

The exposed pad centered on the package bottom must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V1

Typical 2-Tone RF Performance: (measured in test fixture) Freq. = 2.5 GHz, V_{DS} = 28 V, I_{DQ} = 400 mA, Tone Spacing = 1 MHz, T_{C} = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Peak Envelope Power	3 dB Compression 1 dB Compression	P _{3dB, PEP} P _{1dB, PEP}	35 —	45 28	_	W
Small Signal Gain	_	G _{SS}	12.5	13.5	_	dB
Drain Efficiency	3 dB Compression	η	50	55	_	%

Typical OFDM Performance: (measured in load pull system (refer to Table 2 and Fig. 1)) V_{DS} = 28 V, I_{DQ} = 350 mA, Single Carrier OFDM waveform 64-QAM 3/4, 8 burst, continuous frame data, 10 MHz channel bandwidth, Peak/Avg = 10.3 dB @ 0.01% probability on CCDF, P_{OUT} = 1.5 W avg., T_{C} = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	2.5 - 2.7 GHz 3.3 - 3.5 GHz	G _P	_	13.0 10.5	_	dB
Drain Efficiency	Prain Efficiency 2.5 - 2.7 GHz 3.3 - 3.5 GHz		_	27 25	_	%
Error Vector Magnitude	2.5 - 2.7 GHz 3.3 - 3.5 GHz	EVM	_	2 2	_	%

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B devices.

GaN Power Transistor, 28 V, 45 W DC - 4 GHz

NPT1004D Rev. V1

DC Electrical Characteristics: T_C = 25°C

Parameter Test Conditions			Min.	Тур.	Max.	Units
Off Characteristics						
Drain-Source Breakdown Voltage	V _{GS} = -8 V, I _D = 16 mA	V _{BDS}	100	_	_	V
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 60 V	I _{DLK}	_	2	10	mA
On Characteristics						
Gate Threshold Voltage	V _{DS} = 28 V, I _D = 16 mA	V _T	-2.3	-1.8	-1.3	V
Gate Quiescent Voltage	V _{DS} = 28 V, I _D = 350 mA	V_{GSQ}	-2.0	-1.5	-1.0	V
On Resistance	V _{GS} = 2 V, I _D = 120 mA	R _{ON}	_	0.25	0.30	Ω
Drain Current	V _{DS} = 7 V pulsed, pulse width 300 ms 0.2% Duty Cycle, V _{GS} = 2 V	I _D	7.5	9.5	_	Α

Absolute Maximum Ratings^{2,3,4}

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	100 V		
Gate Source Voltage, V _{GS}	-10 to 3 V		
Total Device Power Dissipation (derated above 25°C)	40 W		
Junction Temperature, T _J	+200°C		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +150°C		

^{2.} Exceeding any one or combination of these limits may cause permanent damage to this device.

Thermal Characteristics⁵

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance	V _{DS} = 28 V, T _J = 200°C	$R_{\theta JC}$	4.3	°C/W

^{5.} Junction temperature (T_J) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink.

^{3.} MACOM does not recommend sustained operation near these survivability limits.

^{4.} Operating at nominal conditions with $T_J \le 200^{\circ}$ C will ensure MTTF > 1 x 10^6 hours.

Rev. V1

Table 1: Optimum Impedance Characteristics for CW Gain, Drain Efficiency, and Output Power Performance

Frequency (MHz)	Z _S (Ω)	Z _L (Ω)	P _{SAT} (W)	G _{SS} (dB)	Drain Efficiency (%)
900	2.0 + j2.7	6.0 + j3.3	45	22.5	72
1500	1.6 - j0.8	4.5 + j0.5	45	18.5	70
2500	2.0 - j3.2	3.5 - j5.0	45	14.0	65
3500	3.2 - j6.5	2.9 - j8.0	35	12.0	60

Table 2: Optimum Impedance Characteristics for WiMAX Gain, Drain Efficiency, Output Power, and Linearity Performance. Single Carrier OFDM waveform 64-QAM 3/4, 8 burst, Peak/Avg = 10.3 dB @ 0.01% probability on CCDF, 2% EVM.

Frequency (MHz)	Z _S (Ω)	Z _L (Ω)	P _{SAT} (W)	G _{SS} (dB)	Drain Efficiency (%)
2500 ⁶	2.1 - j7.6	3.1 - j3.9	5.0	14.0	27
2600 ⁶	2.3 - j7.7	3.3 - j4.4	5.0	13.0	27
2700 ⁶	2.3 - j9.0	3.4 - j4.7	5.0	13.0	27
3300 ⁷	3.3 - j11.8	3.7 - j7.2	6.3	11.5	30
3500 ⁷	3.5 - j13.5	3.5 - j10.0	4.5	10.5	25
3800 ⁷	4.5 - j16.2	3.7 - j11.2	3.2	8.0	17

^{6.} Continuous frame data, 10 MHz channel bandwidth.

Impedance Reference

Z_S and Z_L vs. Frequency

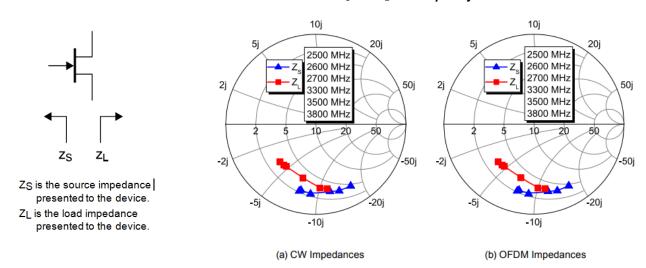


Figure 1 - Optimum Impedance Characteristics for CW and OFDM Performance

^{7. 20} ms frame, 15 ms frame data, 3.5 MHz channel bandwidth.

Rev. V1

Load-Pull Data, Reference Plane at Device Leads: V_{DS} = 28 V, I_{DQ} = 350 mA (unless noted)

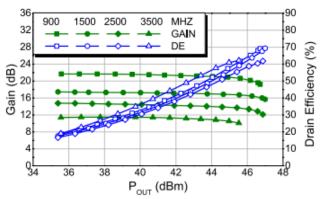


Figure 2 - Typical CW Performance, Frequency = 900 to 3500MHz, I_{DQ}=400mA

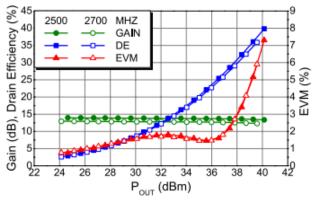


Figure 3 - OFDM Performance Tuned for P_{OUT} at 2% EVM in Load-Pull System

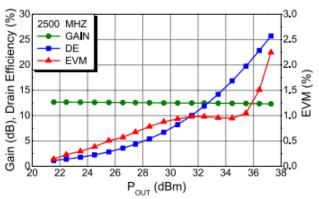


Figure 4 - OFDM Performance Tuned for POUT at 1.5% EVM in Load-Pull System

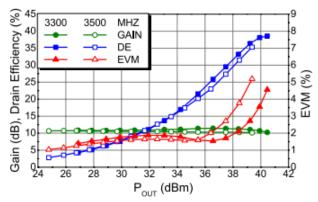
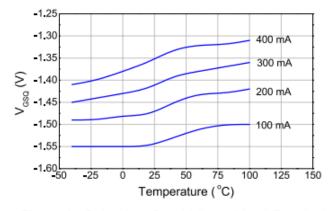



Figure 5 - OFDM Performance Tuned for P_{OUT} at 2% EVM in Load-Pull System

Figure 6 - Quiescient Gate Voltage (V_{GSQ}) Required to Reach I_{DQ} as a Function of Case Temperature

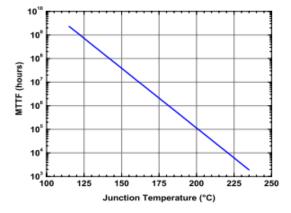
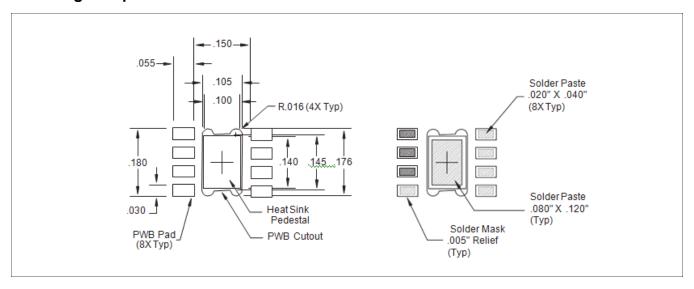
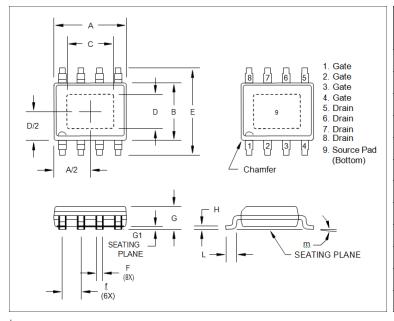


Figure 7 - MTTF of NRF1 devices as a function of junction temperature

5


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.



Rev. V1

Mounting Footprint

Package Dimensions & Pin Out[†]

Dim.	Incl	hes	Millimeters		
Dilli.	Min.	Max.	Min.	Max.	
Α	0.189	0.196	4.80	4.98	
В	0.150	0.157	3.81	3.99	
С	0.107	0.123	2.72	3.12	
D	0.071	0.870	1.870	2.21	
Е	0.230	0.244	5.85	6.19	
f	0.050	BSC	1.270	BSC	
F	0.0138	0.0192	0.35	0.49	
G	0.055	0.061	1.40	1.55	
G1	0.000	0.004	0.00	0.10	
Н	0.075	0.098	1.91	2.50	
L	0.016	0.035	0.41	0.89	
m	0°	8°	0°	8°	

[†] Meets JEDEC moisture sensitivity level 3 requirements. Plating is Matte Sn.