

NPT1012B

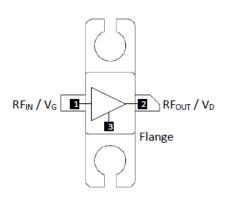
Rev. V1

Features

- Optimized for Broadband Operation (DC 4 GHz)
- 25 W P3dB CW Power @ 3000 MHz
- 16 20 W P3dB CW Power from 1.0 2.5 GHz in application board with >45% Drain Efficiency
- 10 20 W P3dB CW Power from 0.03 1.0 GHz in application board with >50% Drain Efficiency
- High Efficiency from 14 to 28 V
- $4^{\circ}C/W R_{TH}$ with $T_{J} < 200^{\circ}C$
- Robust up to 10:1 VSWR Mismatch at All Angles with No Device Damage at 90°C Flange
- Subject to EAR99 Export Control
- RoHS* Compliant

Applications

- Defense Communications
- Land Mobile Radio
- Avionics
- Wireless Infrastructure
- ISM
- VHF/UHF/L/S-Band Radar


Description

The NPT1012B GaN HEMT is a power transistor optimized for DC - 4 GHz operation. This device supports CW, pulsed, and linear operation with output power levels to 25 W. This transistor is assembled in an industry standard surface mount plastic package.

Ordering Information

Part Number	Package		
NPT1012B	30 slot tray		

Functional Schematic

Pin Configuration

Pin #	Pin Name	Function		
1	RF _{IN} / V _G	RF Input / Gate		
2	RF_{OUT} / V_D	RF Output / Drain		
3	Flange ¹	Ground / Source		

1. The flange must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

NPT1012B

Rev. V1

Typical CW RF Specifications: (measured in a test fixture) Freq. = 3 GHz, V_{DS} = 28 V, I_{DQ} = 225 mA, T_{C} = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Average Output Power	3 dB Compression 1 dB Compression	P _{3dB} P _{1dB}	43	44 43		W
Small Signal Gain	_	G _{SS}	12	13		dB
Drain Efficiency	3 dB Compression	η	57	65	_	%
Output Mismatch Stress	VSWR = 10:1. all phase angles, $P_{OUT} = P_{SAT}$	Ψ	No performance degradation after test			

DC Electrical Characteristics: T_c = 25°C

Parameter	Test Conditions Symbol		Min.	Тур.	Max.	Units		
Off Characteristics								
Drain-Source Breakdown Voltage	V _{GS} = -8 V, I _D = 8 mA	V_{BDS}	100		_	V		
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 60 V	I _{DLK}	_		4	mA		
On Characteristics	On Characteristics							
Gate Threshold Voltage	V _{DS} = 28 V, I _D = 8 mA	V _T	-2.3	-1.8	-1.3	V		
Gate Quiescent Voltage	Gate Quiescent Voltage V_{DS} = 28 V, I_D = 225 mA		-2.0	-1.5	-1.0	V		
On Resistance	On Resistance $V_{GS} = 2 V, I_D = 60 mA$		—	0.44	0.55	Ω		
Drain CurrentVDS = 7 V pulsed, pulse width 30 0.2% Duty Cycle, VGS = 2 V		I _D	—	5.4	_	A		

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

NPT1012B

Rev. V1

Absolute Maximum Ratings^{2,3,4}

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	100 V		
Gate Source Voltage, V _{GS}	-10 to 3 V		
Gate Current, I _G	40 mA		
Total Device Power Dissipation (derated above +25°C)	44 W		
Junction Temperature, T _J	+200°C		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +150°C		

2. Exceeding any one or combination of these limits may cause permanent damage to this device.

3. MACOM does not recommend sustained operation near these survivability limits.

4. Operating at nominal conditions with $T_J \le 200^{\circ}$ C will ensure MTTF > 1 x 10^{6} hours.

Thermal Characteristics⁵

Parameter	Test Conditions	Symbol	Symbol Typical	
Thermal Resistance	V _{DS} = 28 V, T _J = 180°C	$R_{ ext{ heta}JC}$	4.0	°C/W

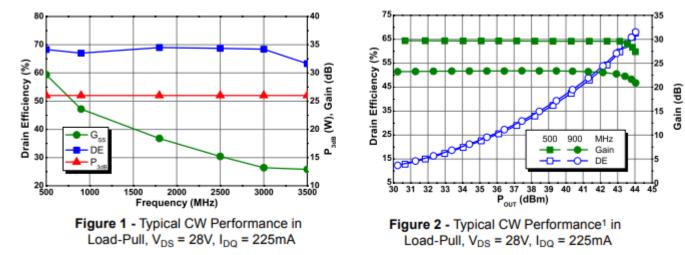
5. Junction temperature (T_J) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these MM Class A, CDM Class IV, HBM Class 1B devices.


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

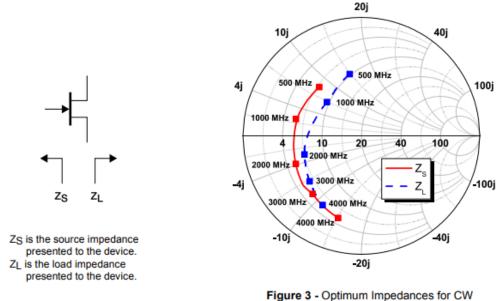
NPT1012B

Rev. V1

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

NPT1012B Rev. V1

Load-Pull Data, Reference Plane at Device Leads: V_{DS} = 28 V, I_{DQ} = 225 mA, T_{C} = 25°C


Table 1: Optimum Impedance Characteristics for CW Gain, Drain Efficiency, and Output Power Performance

Frequency (MHz)	V _{DS} (V)	Ζ _S (Ω)	Z _L (Ω)	P _{SAT} (W)	GSS (dB)	Drain Efficiency @ P _{SAT} (%)
500 ⁶	14	7.0 + j8.2	8.6 + j7.4	12	27.8	76
500 ⁶	22	7.0 + j8.2	9.7 + j11.3	21	29.2	74
500 ⁶	28	7.0 + j8.2	9.7 + j14.1	26	29.7	68
900 ⁶	14	5.8 + j3.1	6.8 + j4.7	12	22.4	74
900 ⁶	22	5.8 + j3.1	9.6 + j5.3	24	23.3	74
900 ⁶	28	5.8 + j3.1	9.8 + j7.8	26	23.6	67
1800	28	3.5 - j3.6	6.9 + j2.0	26	18.4	69
2500	14	3.9 - j7.5	6.2 - j8.0	13	13.7	70
2500	22	4.8 - j7.0	5.5 - j4.1	19	14.9	69
2500	28	4.8 - j7.0	5.5 - j4.1	26	15.2	69
3000	28	5.3 - j8.8	5.3 - j6.4	26	13.2	66
3500	28	5.0 - j14.5	7.0 - j9.5	26	12.9	63

6. 500 MHz and 900 MHz Load-Pull data collected using a 4.7 Ω resistor in the RF path added for stability.

Impedance Reference

Z_s and Z_L vs. Frequency

Performance, V_{DS} = 28V

5

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

NPT1012B

Rev. V1

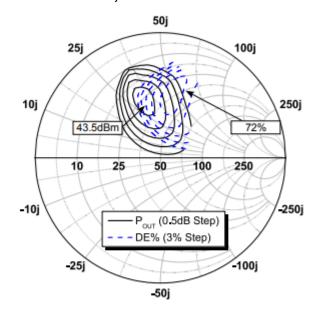


Figure 4 - Load-Pull Contours¹, 500MHz, P_{IN} = 14.5dBm, Z_S = 7.0 + j8.2 Ω

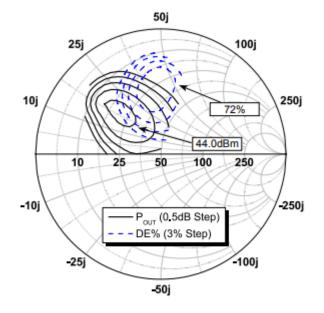
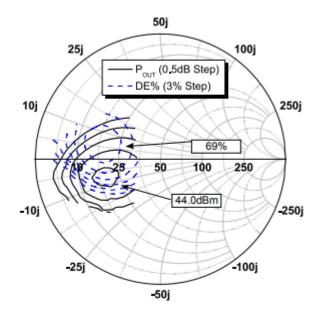



Figure 5 - Load-Pull Contours¹, 900MHz, P_{IN} = 21.0dBm, Z_S = 5.8 + j3.1 Ω

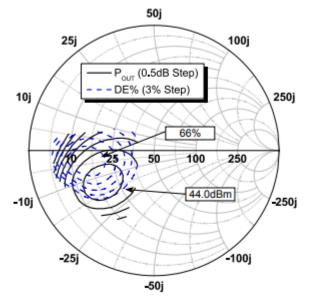


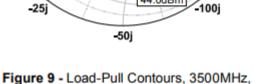
Figure 7 - Load-Pull Contours, 2500MHz, P_{IN} = 29.4dBm, Z_S = 4.8 - j7.0 Ω

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

100j

250

NPT1012B


250j

-250j

Rev. V1

Load-Pull Data, Reference Plane at Device Leads: V_{DS} = 28 V, I_{DQ} = 225 mA, T_A = 25°C

50j

50

P_{out} (0.5dB Step) DE% (3% Step)

100

63%

44.0dBm

25j

10

10j

-10j

Figure 8 - Load-Pull Contours, 3000MHz, P_{IN} = 31.7dBm, Z_S = 5.3 - j8.8 Ω

igure 9 - Load-Pull Contours, 3500MHz P_{IN} = 33.5dBm, Z_S = 5.0 - j14.5 Ω

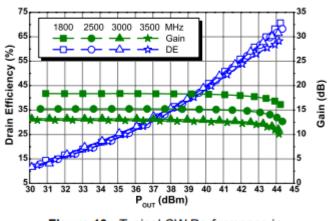


Figure 10 - Typical CW Performance in Load-Pull

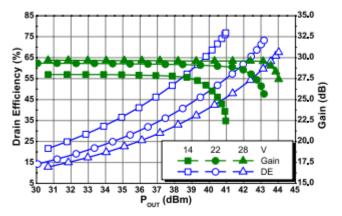
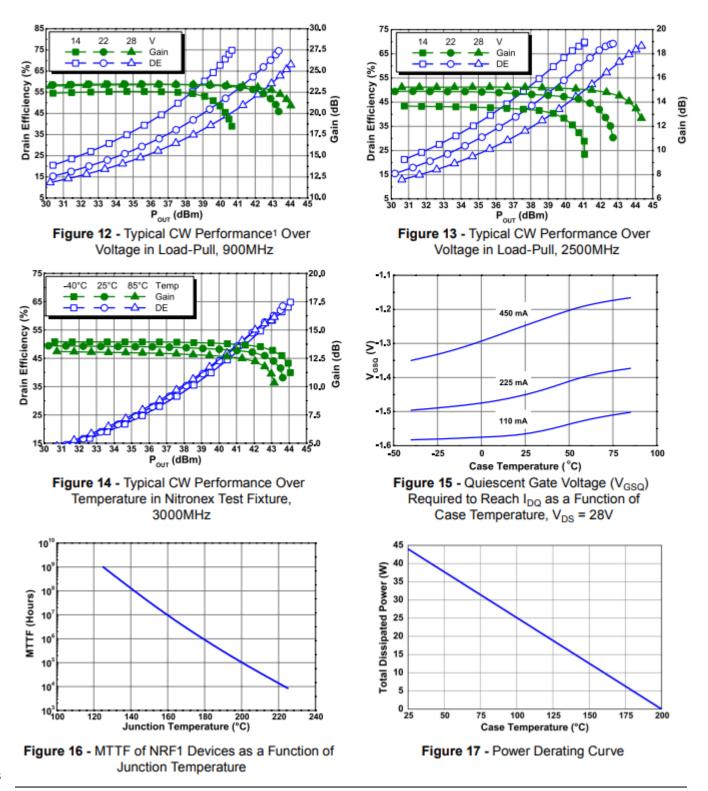
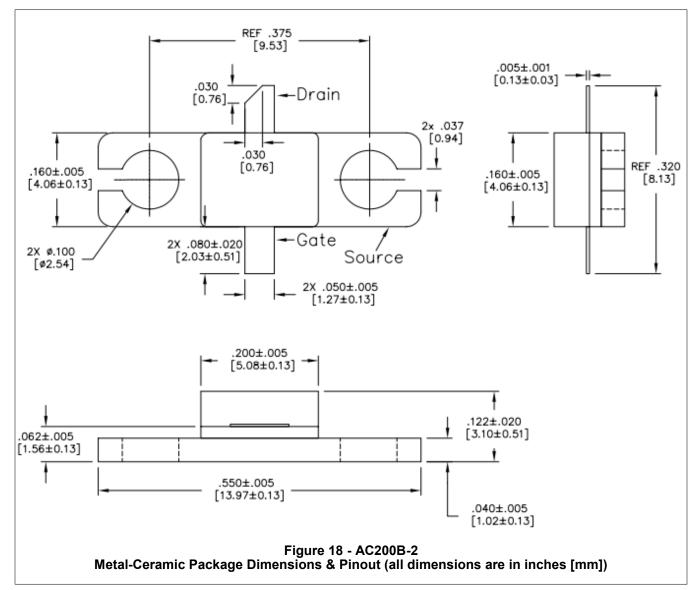



Figure 11 - Typical CW Performance¹ Over Voltage in Load-Pull, 500MHz

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V1

Load-Pull Data, Reference Plane at Device Leads: V_{DS} = 28 V, I_{DQ} = 225 mA, T_A = 25°C


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

NPT1012B

Rev. V1

Outline Drawing

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.