GaN Power Amplifier, 28 V, 125 W 2.1 - 2.7 GHz

NPT25100 Rev. V1

Features

- GaN on Si HEMT D-Mode Power Amplifier
- Suitable for Linear & Saturated Applications
- Broadband Operation from 2.1 2.7 GHz
- 125 W P3dB Peak Envelope Power
- 90 W P3dB CW Power
- 10 W Linear Power @ 2% EVM for Single Carrier OFDM, 10.3 dB peak/avg., 10 MHz channel bandwidth
- 16.5 dB Gain
- 26% Efficiency
- Characterized for Operation up to 32 V
- 100% RF Tested
- Thermally Enhanced Industry Standard Package
- High Reliability Gold Metallization Process
- RoHS* Compliant

Applications

- Defense Communications
- Land Mobile Radio
- Avionics
- Wireless Infrastructure
- ISM
- VHF/UHF/L/S-Band Radar

Description

The NPT25100 GaN on silicon HEMT D-Mode amplifier optimized for 2.1 - 2.7 GHz operation. This device supports CW, pulsed, and linear operation with output power levels to 125 W in an industry standard plastic package with bolt down flange.

NPT25100B

NPT25100P

Ordering Information

Part Number	Package
NPT25100B	Standard Flange
NPT25100P	Earless Flange

RF Specifications (CW)¹: Freq: = 2500 MHz, V_{DS} = 28 V, I_{DQ} = 60 mA, T_{C} = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Average Output Power	3 dB Gain Compression	P _{3dB}	80	90	_	W
Small Signal Gain	_	G _{SS}	14.0	16.5	_	dB
Drain Efficiency	3 dB Gain Compression	η	55	62	_	%

^{1.} Measured in test fixture.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

GaN Power Amplifier, 28 V, 125 W 2.1 - 2.7 GHz

NPT25100 Rev. V1

Typical 2-Tone Performance²:

Freq. = 2500 MHz, V_{DS} = 28 V, I_{DQ} = 600 mA, Tone spacing = 1 MHz, T_{C} = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Peak Envelope Power	3 dB Gain Compression 1 dB Gain Compression -35 dB Gain Compression	P _{3dB,PEP} P _{1dB,PEP} P _{IMD3}	_	125 90 80	_	V

^{2.} Measured in Load Pull System (Refer to Table 1 and Figure 1).

Typical OFDM Performance:

Freq. = 2500 - 2700 MHz, V_{DS} = 28 V, I_{DQ} = 600 mA, P_{OUT}/Avg . = 10 W, T_{C} = 25°C Single carrier OFDM waveform 64-QAM 3/4, 8 burst, continuous frame data, 10 MHz channel bandwidth. Peak/Avg = 10.3 dB @ 0.01% probability on CCDF.

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	_	G_P	_	16.5	-	dB
Drain Efficiency	_	η	_	26.0	_	%
Error Vector Magnitude	_	EVM	_	2.0	_	%

DC Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
	Off Characteristics					
Drain Source Breakdown Voltage	$V_{GS} = -8 \text{ V}, I_{D} = 36 \text{ mA}$	V_{BDS}	100	_	_	V
Drain Source Leakage Current	V _{GS} = -8 V, V _{DS} = 60 V	I _{DLK}	_	9	18	mA
	On Characteristics					
Gate Threshold Voltage	V _{DS} = 28 V, I _D = 36 mA	V _T	-2.3	-1.8	-1.3	V
Gate Quiescent Voltage	V _{DS} = 28 V, I _D = 70 mA	V_{GSQ}	-2.0	-1.5	-1.0	V
On Resistance	$V_{GS} = 2 \text{ V}, I_D = 270 \text{ mA}$	R _{ON}	_	0.13	0.14	Ω
Drain Current	V _{DS} = 7 V pulsed, 300 μs pulse width, 0.2% duty cycle	I _{D,MAX}	_	21.0	_	Α

Rev. V1

Absolute Maximum Ratings^{3,4,5}

Parameter	Absolute Maximum
Drain Source Voltage, V _{DS}	100 V
Gate Source Voltage, V _{GS}	-10 V to +3 V
Gate Current, I _G	180 mA
Total Power Dissipation, P _T	100 W
Junction Temperature, T _J	+200°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

- 3. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 4. MACOM does not recommend sustained operation near these survivability limits.
- 5. Operating at nominal conditions with $T_J \le 200$ °C will ensure MTTF > 1 x 10^6 hours.

Thermal Characteristics⁶

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance	V _{DS} = 48 V, T _J = 145°C	$R_{ heta JC}$	1.75	°C/W

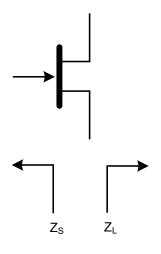
^{6.} Junction temperature (T_J) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM (>2000 V), MM (>100 V) Class 1B devices.



Rev. V1

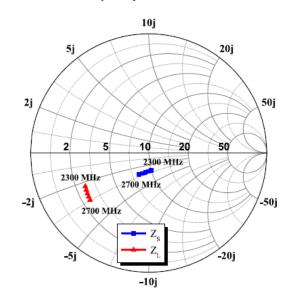
Load-Pull Performance: $V_{DS} = 48 \text{ V}$, $I_{DQ} = 600 \text{ mA}$, $T_C = 25^{\circ}\text{C}$ Reference Plane at Device Leads, CW Drain Efficiency and Output Power Tradeoff Impedance

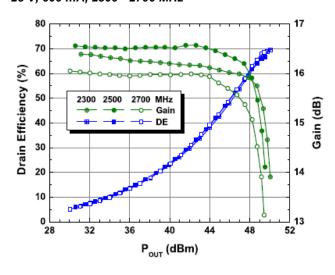
Frequency (MHz)	Z _S (Ω)	Z _L (Ω)
2140	12.1 - j20.0	2.6 - j2.6
2300	10.0 - j3.0	2.5 - j2.3
2400	9.5 - j3.0	2.5 - j2.5
2500	9.0 - j3.0	2.5 - j2.7
2600	8.5 - j3.0	2.5 - j3.1
2700	8.0 - j3.0	2.5 - j3.3

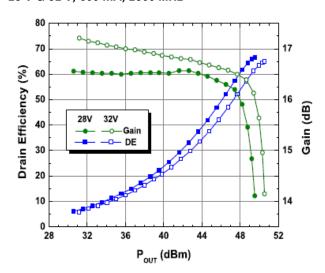
Impedance Reference

 Z_{S} is the source impedance presented to the device. Z_{L} is the load impedance presented to the device.

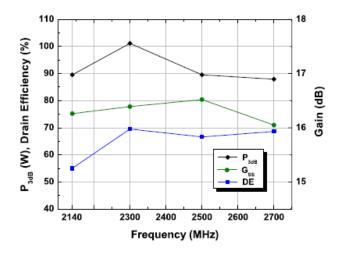
Z_S and Z_L vs. Frequency

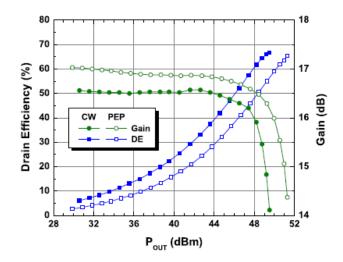



Figure 1 - Optimal impedance for CW performance, V_{DS} = 28 V, I_{DQ} = 600 mA.


Rev. V1

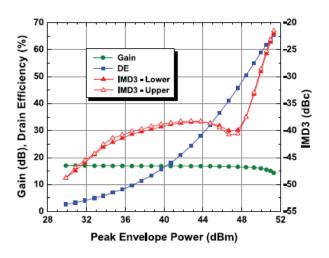
Typical CW Performance in Loadpull System:

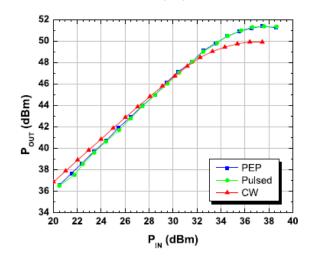

Drain Efficiency & Gain 28 V, 600 mA, 2300 - 2700 MHz


Drain Efficiency & Gain 28 V & 32 V, 600 mA, 2500 MHz

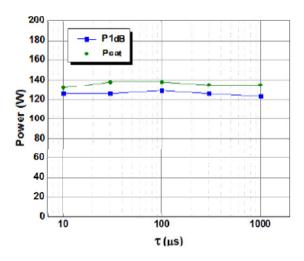
P3dB, Drain Efficiency & Gain 28 V, 600 mA

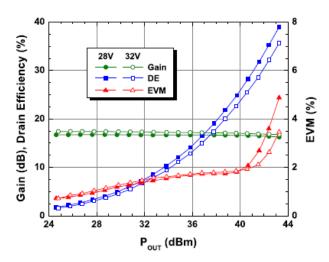
Drain Efficiency & Gain 28 V & 32 V, 600 mA, 2500 MHz, Tone Spacing = 1 MHz




Rev. V1

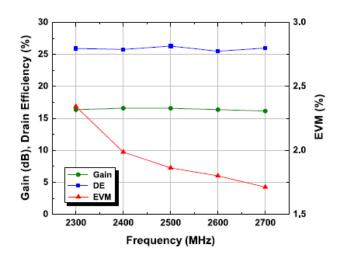
Typical CW Performance in Loadpull System:


Drain Efficiency, Gain, & IMD3 28 V, 600 mA, 2500 MHz, Tone Spacing = 1 MHz

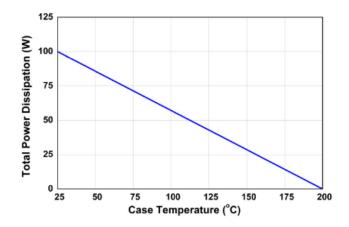

Drain Efficiency, Gain, & IMD3 28 V , 600 mA, 2500 MHz, Tone Spacing = 1 MHz 10 µs Pulse Width, 1% Duty Cycle

Power 28 V, 600 mA, 2500 MHz, 1% Duty Cycle

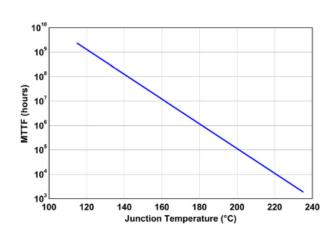
Drain Efficiency , Gain, & EVM 28 V & 32 V, 600 mA, 2500 MHz



Rev. V1

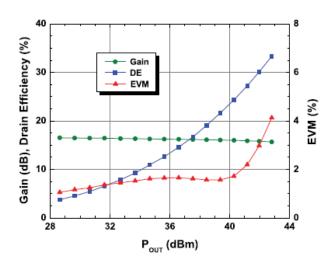

Typical CW Performance in Loadpull System:

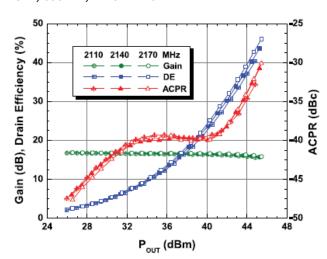
Drain Efficiency , Gain, & EVM 28 V & 32 V, 600 mA, 2500 MHz P_{OUT,AVG} = 10 W



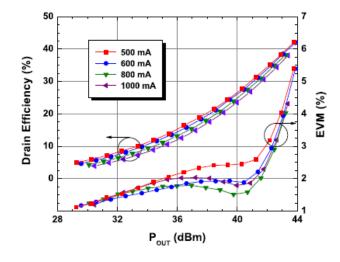
Typical Performance:

Power Derating


MTTF

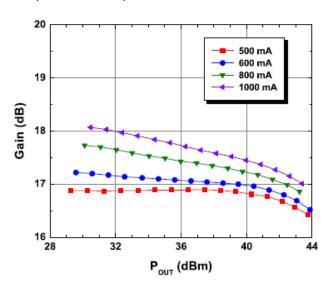

Rev. V1

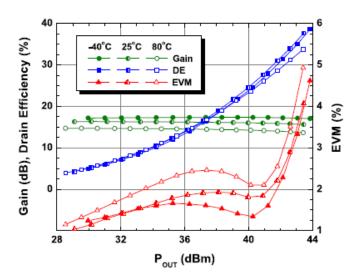
Typical Performance in MACOM Evaluation Circuit:


Drain Efficiency , Gain, & EVM 28 V , 600 mA, 2600 MHz LTE = 20 MHz

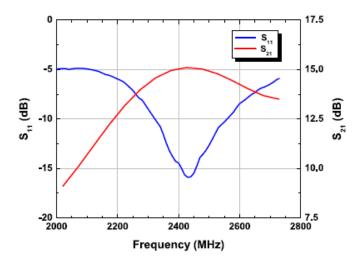
Drain Efficiency , Gain, & EVM 28 V , 600 mA, 2110 - 2170 MHz

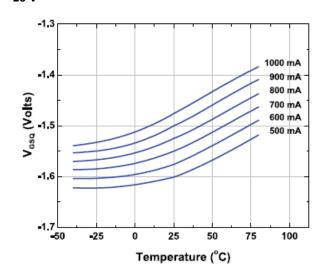
Drain Efficiency & EVM 28 V, 500 - 1000 mA, 2500 MHz



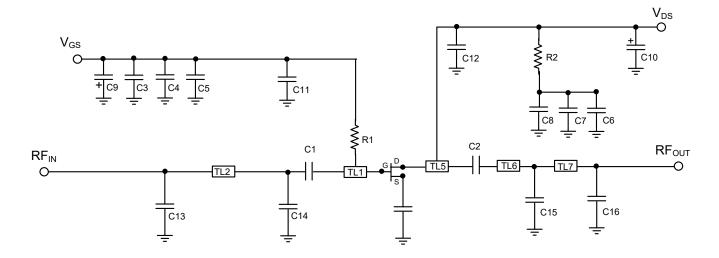

Rev. V1

Typical Performance in MACOM Evaluation Circuit:


Gain 28 V , 500 - 1000 mA, 2500 MHz


Drain Efficiency , Gain, & EVM 28 V , 600 mA, 2500 MHz

S-Parameters 28 V, 600 mA


Quiescent Gate Voltage 28 V

Rev. V1

Evaluation Board and Recommended Tuning Solution 2500 MHz Narrowband Circuit

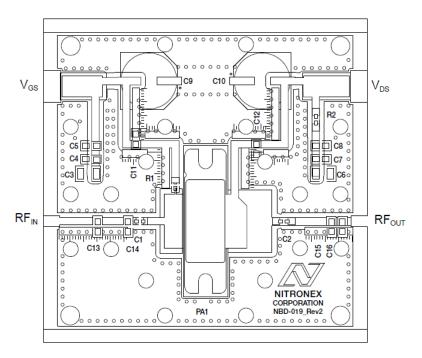
Description

Parts measured on evaluation board (30-mil thick RO4350). The PCB's electrical and thermal ground is provided using a standard-plated densely packed via hole array (see recommended via pattern).

Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

- 1. Set V_{GS} to the pinch-off (V_P) , typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (48 V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

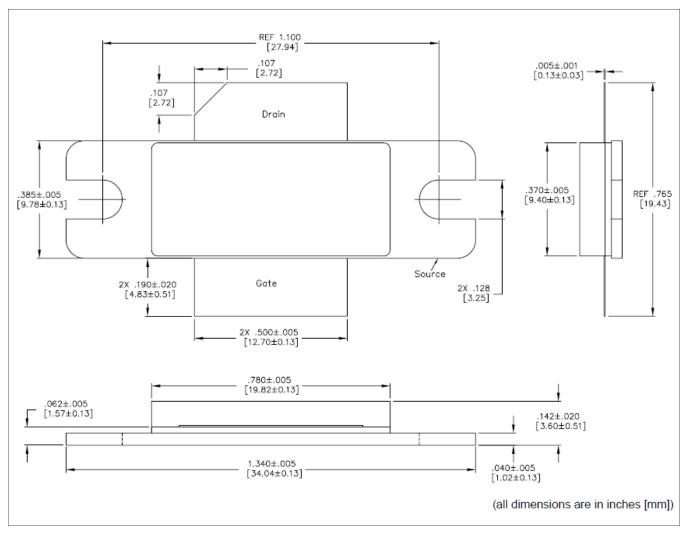

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to $V_{P.}$ 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

Rev. V1

Evaluation Board and Recommended Tuning Solution 2500 MHz Circuit

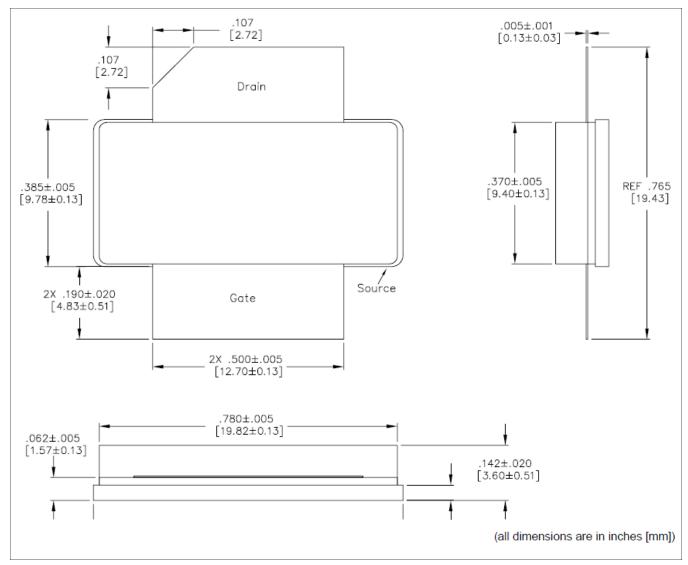
Parts list


Reference	Value	Tolerance	Manufacturer	Part Number	
C1	3.3 pF	±0.1 pF	ATC	ATC600F3R3B	
C2	1.2 pF	±0.1 pF	ATC	ATC100B1R2BT	
C3	1 μF	20%	Panasonic	ECJ-5YB2A105M	
C4, C7	0.1 μF	10%	Kemet	C1206C104K1RACTU	
C5, C8	0.01 μF	10%	AVX	12061C103KAT2A	
C6	1 μF	10%	Panasonic	ECJ-5YB2A105M	
C9	150 μF	20%	Nichicon	UPW1C151MED	
C10	270 µF	20%	United Chmi-Con	ELXY630ELL271MK25S	
C11, C12	33 pF	5%	ATC	ATC600F330B	
C13	0.9 pF	±0.1 pF	ATC	ATC600F0R9B	
C14	1.8 pF	±0.1 pF	ATC	ATC600F1R8B	
C15	Do Not Place	_	_	_	
C16	0.8 pF	±0.1 pF	ATC	ATC600F0R8B	
PA1	_	_	MACOM	NPT25100B	
R1	10 Ω	1%	Panasonic	ERJ-2RKF10R0X	
R2	0.033 Ω	5%	Coilcraft	ERJ-6RQFR33V	
NBD-019_Rev2	_	_	Alberta Printed Circuits	NBD-019_Rev2	
PCB		Rogers RO4350, e _r =3.5, 30 mil			

11

Rev. V1

Outline Drawing NPT25100B[†]



[†] Reference Application Note AN3025 for mounting/soldering recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is Ni/Au.

Rev. V1

Outline Drawing NPT25100P[†]

[†] Reference Application Note AN3025 for mounting/soldering recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is Ni/Au.