

NSL-32SR3

60Ω ON-Resitance Photocell (CdS) Output Optocoupler

The NSL-32SR3 is an optocoupler that has an OFF-resistance of $25M\Omega$.

Advanced Photonix CdS photocell output optocouplers optically couple an LED to a CdS Light Dependent Resistor (LDR). The LDR resistance increases when the LED current is OFF and decreases when LED current is ON. The device showcases a large dynamic range with a response time that efficiently mimics the human eye's sensitivity to light changes. Engineered with High, Medium, and Low dark resistances, the optocouplers are available with diverse resistance values to suit various applications. The photocells are encased in an optically-isolated structures.

Applications

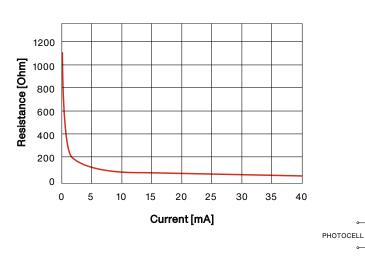
Industrial
AC/DC power control
Measuring Instruments
Factory Automation
Audio

Features

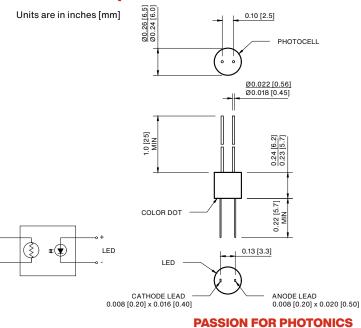
Compact Moisture Resistant Package Low LED Current Very Low "On" Resistance Passive Resistance Output Low Distortion Suitable for AC or DC

PASSION FOR PHOTONICS DS NSL-32SR3 Rev. B

Absolute Maximum Ratings


Parameter	Symbol	Min	Max	Unit
Isolation Voltage	V _R	-	2000	V
Power Dissipation	-	-	50	mW
Operating Temperature	T _{op}	-40	+75	°C
Storage Temperature	Τ _{stg}	-40	+75	°C

Typical Electro-Optical Specifications at T_A=23 °C


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
LED						
Forward Current	-	I _F	-	-	25	mA
Forward Voltage	I _r =20mA	V _F	-	-	2.5	V
Reverse Current	V _R =4V	I _R	-	-	10	μΑ
CELL						
Max. Cell Voltage	Peak AC or DC	V _{MAX}	-	-	60	V
COUPLED						
On Resistance	I _r =20mA	R _{on}	-	-	60	Ω
	I _r =5mA	R_{on}	-	150	-	Ω
Off Resistance	10sec after If=0mA	R _{off}	25	-	-	MΩ
Rise Time	Time for the dark to light change in conductance to reach 63% of its final value	T _R	-	5	-	msec
Decay Time	Time to reach 100KΩ after removal of l _i =16mA	T _D	-	10	-	msec
Cell Temp. Coefficient	I _r => 5mA	T _{coef}	-	0.7	-	% / °C

Typical Transfer Characteristics

Output Resistance vs. Input Current

Mechanical Specifications

