MOSFET - Power, Single, N-Channel

60 V, 10.7 mΩ, 50 A

NTMFS5C673N

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free and are RoHS Compliant

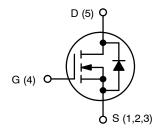
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

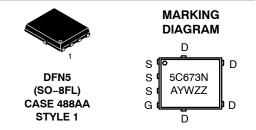
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	60	V
Gate-to-Source Voltage	9		V _{GS}	±20	V
Continuous Drain		T _C = 25°C	I _D	50	Α
Current R _{θJC} (Notes 1, 3)	Steady	T _C = 100°C		35	
Power Dissipation	State	T _C = 25°C	P_{D}	46	W
R _{θJC} (Note 1)		T _C = 100°C		23	
Continuous Drain		T _A = 25°C	I _D	14	Α
Current R _{0JA} (Notes 1, 2, 3)	Steady	T _A = 100°C		10	
Power Dissipation	State	T _A = 25°C	P_{D}	3.6	W
R _{0JA} (Notes 1 & 2)		T _A = 100°C	1	1.8	
Pulsed Drain Current	$T_A = 25$	°C, t _p = 10 μs	I _{DM}	290	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			Is	52	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 2 A)			E _{AS}	81	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	3.2	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	42	


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
60 V	10.7 m Ω @ 10 V	50 A

N-CHANNEL MOSFET

5C673N = Specific Device Code A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS						•	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		60			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				29		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, T _J = 25°C				10		
		$V_{DS} = 60 \text{ V}$	T _J = 125°C			250	μΑ	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= 20 V			100	nA	
ON CHARACTERISTICS (Note 4)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 35 μΑ	2.0		4.0	V	
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-8.5		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 7 A		8.9	10.7	mΩ	
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D	= 25 A		37		S	
Gate Resistance	R _G	T _A = 25°C			1.2		Ω	
CHARGES, CAPACITANCES & GATE RE	SISTANCE							
Input Capacitance	C _{ISS}			680		pF		
Output Capacitance	C _{OSS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 30 V			465			
Reverse Transfer Capacitance	C _{RSS}				6.0			
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 30 V; I _D = 7 A			9.6		nC	
Threshold Gate Charge	Q _{G(TH)}				2.3			
Gate-to-Source Charge	Q _{GS}				3.6			
Gate-to-Drain Charge	Q_{GD}				0.9			
Plateau Voltage	V_{GP}				4.6		V	
SWITCHING CHARACTERISTICS (Note 5	5)							
Turn-On Delay Time	t _{d(ON)}				8.4			
Rise Time	t _r	V_{GS} = 10 V, V_{DS} = 30 V, I_D = 7 A, R_G = 2.5 Ω			1.9			
Turn-Off Delay Time	t _{d(OFF)}				12.5		ns -	
Fall Time	t _f				2.8			
DRAIN-SOURCE DIODE CHARACTERIS	TICS							
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.82			
		$I_S = 7 A$	T _J = 125°C		0.67		-	
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dls/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 3 \text{ A}$			32			
Charge Time	ta				16		ns	
Discharge Time	t _b				16			
Reverse Recovery Charge	Q _{RR}				22		nC	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

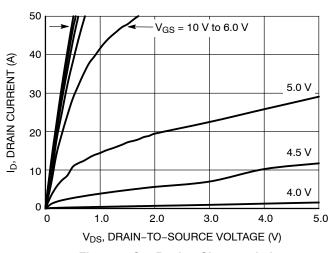


Figure 1. On-Region Characteristics

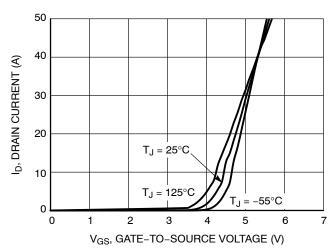


Figure 2. Transfer Characteristics

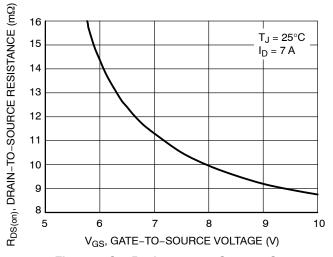


Figure 3. On-Resistance vs. Gate-to-Source Voltage

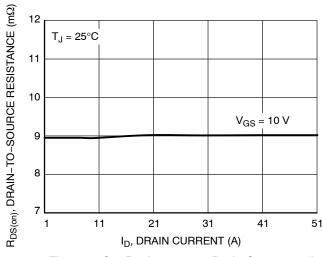


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

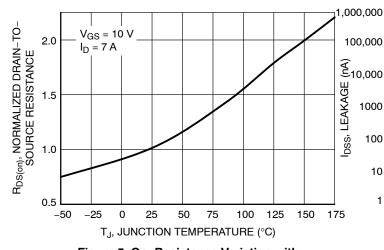


Figure 5. On–Resistance Variation with Temperature

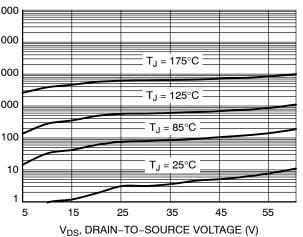


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

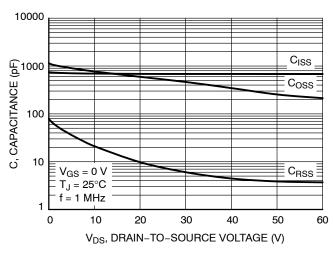


Figure 7. Capacitance Variation

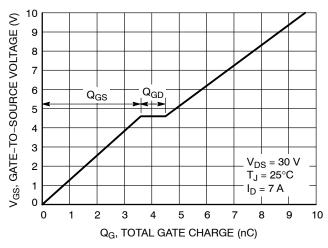


Figure 8. Gate-to-Source vs. Total Charge

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

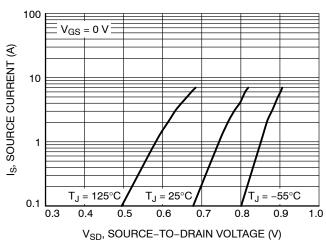


Figure 10. Diode Forward Voltage vs. Current

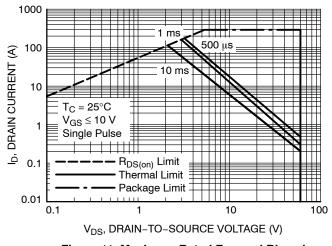


Figure 11. Maximum Rated Forward Biased Safe Operating Area

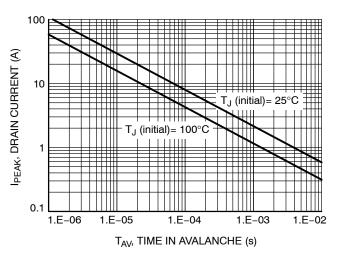


Figure 12. Maximum Drain Current vs. Time in Avalanche

TYPICAL CHARACTERISTICS

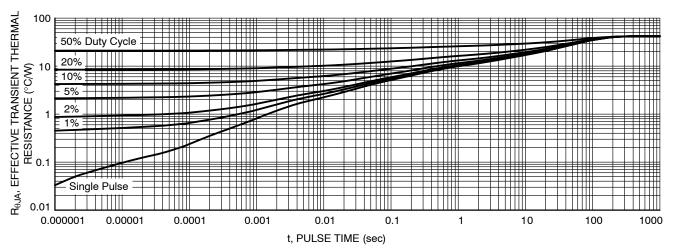


Figure 13. Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTMFS5C673NT1G	5C673N	DFN5 (Pb-Free)	1500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

0.10

0.10

SIDE VIEW

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA ISSUE N

DATE 25 JUN 2018

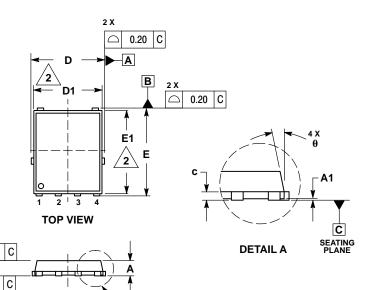
NOTES:

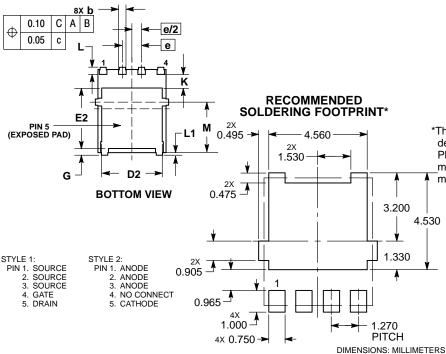
BURRS

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETER. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.00		0.05	
b	0.33	0.41	0.51	
С	0.23	0.28	0.33	
D	5.00	5.15	5.30	
D1	4.70	4.90	5.10	
D2	3.80	4.00	4.20	
E	6.00	6.15	6.30	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
е	1.27 BSC			
G	0.51	0.575	0.71	
K	1.20	1.35	1.50	
L	0.51	0.575	0.71	
L1	0.125 REF			
M	3.00	3.40	3.80	
A	0 0		12 °	

GENERIC MARKING DIAGRAM*




XXXXXX = Specific Device Code

= Assembly Location Α

Υ = Year W = Work Week ZZ = Lot Traceability

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DETAIL A

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ÓN Semiconductor does not convey any license under its patent rights nor the rights of others