NX3DV3899

Dual double-pole double-throw analog switch

Rev. 3.1 — 25 June 2021

Product data sheet

1 General description

The NX3DV3899 is a dual double-pole double-throw analog data-switch suitable for use as an analog or digital multiplexer/demultiplexer. It consists of four switches, each with two independent input/outputs (nY0 and nY1) and a common input/output (nZ). The two digital inputs (1S and 2S) are used to select the switch position. Schmitt trigger action at the select input (nS) makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 1.4 V to 4.3 V.

A low input voltage threshold allows pin nS to be driven by lower level logic signals without a significant increase in supply current I_{CC} . This makes it possible for the NX3DV3899 to switch 4.3 V signals with a 1.8 V digital controller, eliminating the need for logic level translation. The NX3DV3899 allows signals with amplitude up to V_{CC} to be transmitted from nZ to nY0 or nY1; or from nY0 or nY1 to nZ.

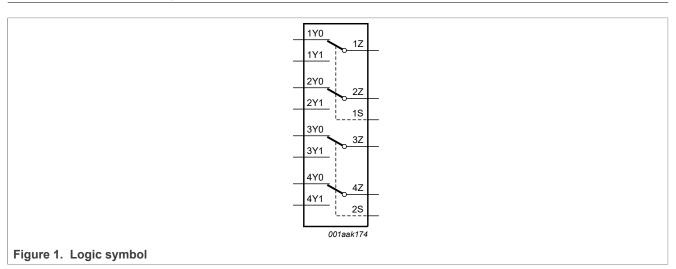
2 Features and benefits

- Wide supply voltage range from 1.4 V to 4.3 V
- · Very low ON resistance (peak):
 - -7.2Ω (typical) at $V_{CC} = 1.4 V$
 - 5.4 Ω (typical) at V_{CC} = 1.65 V
 - -2.9Ω (typical) at $V_{CC} = 2.5 V$
 - -2.4Ω (typical) at $V_{CC} = 3.0 \text{ V}$
 - 2.3 Ω (typical) at V_{CC} = 3.6 V
 - 2.2 Ω (typical) at V_{CC} = 4.3 V
- · Break-before-make switching
- · High noise immunity
- ESD protection:
 - HBM JESD22-A114F Class 2A exceeds 2000 V (all pins)
 - HBM JESD22-A114F Class 3A exceeds 5000 V (I/O pins to GND)
 - MM JESD22-A115-A exceeds 200 V
 - CDM AEC-Q100-011 revision B exceeds 1000 V
- CMOS low-power consumption
- Latch-up performance exceeds 100 mA per JESD 78B Class II Level A
- 1.8 V control logic at V_{CC} = 3.6 V
- · Control input accepts voltages above supply voltage
- Very low supply current, even when input is below V_{CC}
- High current handling capability (350 mA continuous current under 3.3 V supply)
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

Applications 3

- · Data switch
- Cell phone
- PDA
- Portable media player

Ordering information

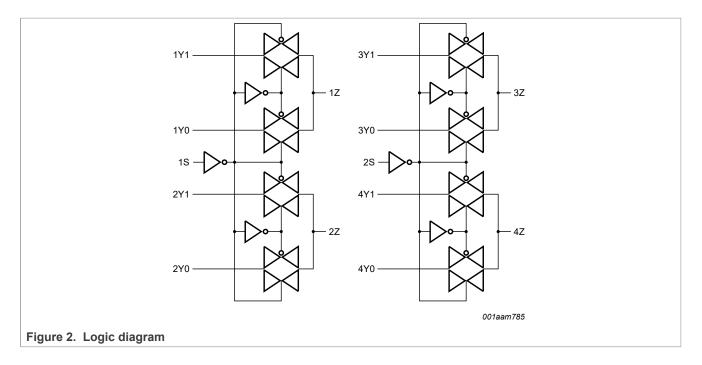

Table 1. Ordering information

	Tanaida Baakara									
Type number	Topside	Package								
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	marking	Name	Description	Version						
NX3DV3899HR	x99	HXQFN16U	plastic thermal enhanced extremely thin quad flat package; no leads; 16 terminals; UTLP based; body 3 x 3 x 0.5 mm	SOT1039-1						
NX3DV3899GU	x9	XQFN16	plastic, extremely thin quad flat package; no leads; 16 terminals; body 1.80 x 2.60 x 0.50 mm	SOT1161-1						

Table 2. Ordering options

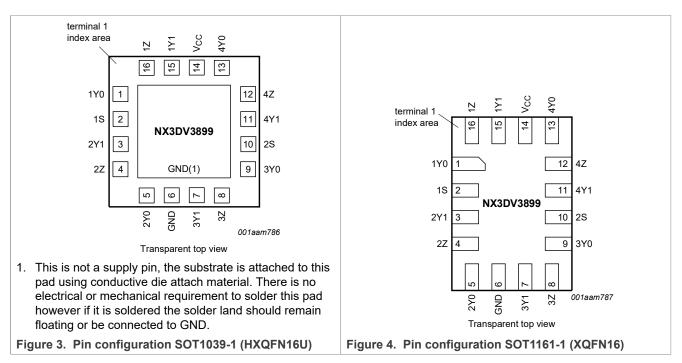
Table 2. Ordering options									
Type number	Orderable part number	Package	Packing method	Minimum order quantity	Temperature range				
NX3DV3899HR	NX3DV3899HR,115	HXQFN16U	REEL 7" Q1 NDP [1]	1500	-40°C to +125°C				
	NX3DV3899HRZ	HXQFN16U	REEL 7" Q1 NDP SSB [2]	1500	-40°C to +125°C				
NX3DV3899GU	NX3DV3899GU,115	XQFN16	REEL 7" Q1 NDP	4000	-40°C to +125°C				

Functional diagram


All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Will go EOL - migrate to new leadframe NX3DV3899HRZ orderable part number.


This packing method uses a Static Shielding Bag (SSB) solution. Material is to be kept in the sealed bag between uses.

Dual double-pole double-throw analog switch

6 Pinning information

6.1 Pinning

Dual double-pole double-throw analog switch

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
1Y0, 2Y0, 3Y0, 4Y0	1, 5, 9, 13	independent input or output
1S, 2S	2, 10	select input
1Y1, 2Y1, 3Y1, 4Y1	15, 3, 7, 11	independent input or output
1Z, 2Z, 3Z, 4Z	16, 4, 8, 12	common output or input
GND	6	ground (0 V)
V _{CC}	14	supply voltage

7 Functional description

Table 4. Function table^[1]

Input nS	Channel on
L	nY0
Н	nY1

^[1] H = HIGH voltage level; L = LOW voltage level.

8 Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+4.6	V
VI	input voltage	select input nS	[1]	-0.5	+4.6	V
V _{SW}	switch voltage		[2]	-0.5	V _{CC} + 0.5	V
I _{IK}	input clamping current	V _I < -0.5 V		-50	-	mA
I _{SK}	switch clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$		-	±50	mA
I _{SW}	switch current	V_{SW} > -0.5 V or V_{SW} < V_{CC} + 0.5 V; source or sink current		-	±350	mA
		V_{SW} > -0.5 V or V_{SW} < V_{CC} + 0.5 V; pulsed at 1 ms duration, < 10 % duty cycle; peak current		-	±500	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C				
		HXQFN16U	[3]	-	250	mW
		XQFN16	[4]	-	250	mW

^[1] The minimum input voltage rating may be exceeded if the input current rating is observed.

NX3DV3899

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed but may not exceed 4.6 V.

For HXQFN16U package: above 135 °C the value of P_{tot} derates linearly with 16.9 mW/K.

^[4] For XQFN16 package: above 133 °C the value of Ptot derates linearly with 14.5 mW/K.

9 Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			1.4	4.3	V
VI	input voltage	select input nS		0	4.3	V
V_{SW}	switch voltage		[1]	0	V _{CC}	V
T _{amb}	ambient temperature			-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 1.4 V to 4.3 V	[2]	-	200	ns/V

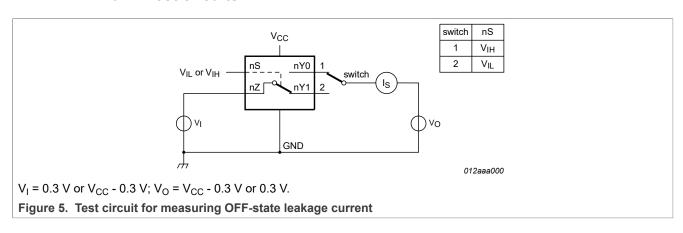
^[1] To avoid sinking GND current from terminal nZ when switch current flows in terminal nYn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no GND current will flow from terminal nYn. In this case, there is no limit for the voltage drop across the switch.

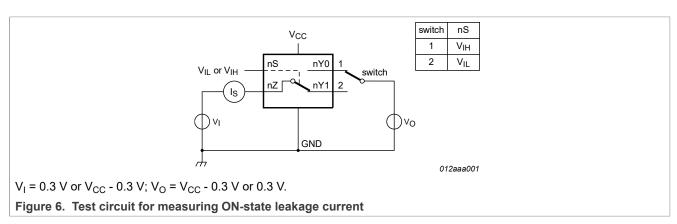
10 Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions		T _{amb} = 25 °C			T_{amb} = -40 °C to +125 °C			Unit
				Min	Тур	Max	Min	Max (85 °C)	Max (125 °C)	
V _{IH}	HIGH-level	V _{CC} = 1.4 V to 1.6 V		0.9	-	-	0.9	-	-	V
	input voltage	V _{CC} = 1.65 V to 1.95 V		0.9	-	-	0.9	-	-	V
		V _{CC} = 2.3 V to 2.7 V		1.1	-	-	1.1	-	-	V
		V _{CC} = 2.7 V to 3.6 V		1.3	-	-	1.3	-	-	V
		V _{CC} = 3.6 V to 4.3 V		1.4	-	-	1.4	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.4 V to 1.6 V		-	-	0.3	-	0.3	0.3	V
		V _{CC} = 1.65 V to 1.95 V		-	-	0.4	-	0.4	0.3	V
		V _{CC} = 2.3 V to 2.7 V		-	-	0.4	-	0.4	0.4	V
		V _{CC} = 2.7 V to 3.6 V		-	-	0.5	-	0.5	0.5	V
		V _{CC} = 3.6 V to 4.3 V		-	-	0.6	-	0.6	0.6	V
I	input leakage current	select input nS; V _I = GND to 4.3 V; V _{CC} = 1.4 V to 4.3 V		-	-	-	-	±0.5	±1	μA
I _{S(OFF)}	OFF-state leakage	nY0 and nY1 port; see Figure 5								
	current	V _{CC} = 1.4 V to 4.3 V		-	-	±5	-	±50	±500	nA
I _{S(ON)}	ON-state	nZ port; see Figure 6								
	leakage current	V _{CC} = 1.4 V to 4.3 V		-	-	±5	-	±50	±500	nA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{SW} = GND$ or V_{CC}								
		V _{CC} = 3.6 V		-	-	100	-	500	5000	nA


^[2] Applies to control signal levels.


Table 7. Static characteristics...continued

At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions	Ta	$T_{amb} = 25 ^{\circ}C$			T_{amb} = -40 °C to +125 °C		
			Min	Тур	Max	Min	Max (85 °C)	Max (125 °C)	
		V _{CC} = 4.3 V	-	-	150	-	800	6000	nA
00	additional	V _{SW} = GND or V _{CC}							
	supply current	V _I = 2.6 V; V _{CC} = 4.3 V	-	2.0	4.0	-	7	7	μΑ
		V _I = 2.6 V; V _{CC} = 3.6 V	-	0.35	0.7	-	1	1	μΑ
		V _I = 1.8 V; V _{CC} = 4.3 V	-	7.0	10.0	-	15	15	μΑ
		V _I = 1.8 V; V _{CC} = 3.6 V	-	2.5	4.0	-	5	5	μΑ
		V _I = 1.8 V; V _{CC} = 2.5 V	-	50	200	-	300	500	nA
C _I	input capacitance		-	1.0	-	-	-	-	pF
C _{S(OFF)}	OFF-state capacitance		-	8	-	-	-	-	pF
C _{S(ON)}	ON-state capacitance		-	30	-	-	-	-	pF

10.1 Test circuits

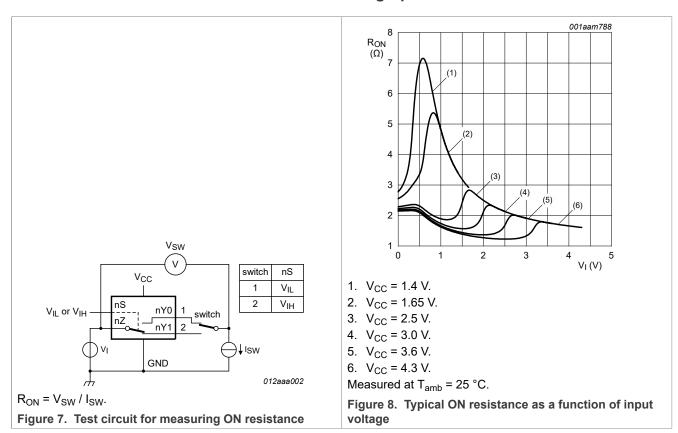
NX3DV3899

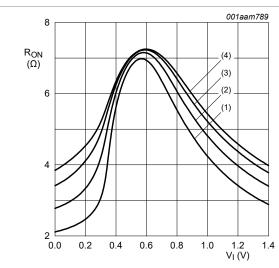
All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Dual double-pole double-throw analog switch

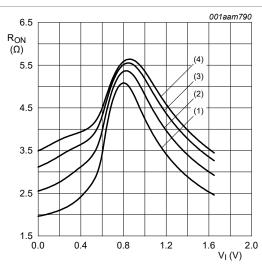
10.2 ON resistance


Table 8. ON resistance

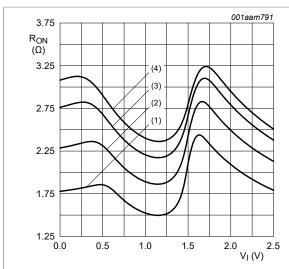

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Figure 8 to Figure 14.

Symbol	Parameter Conditions		T_{amb} = -40 °C to +85 °C			T_{amb} = -40 °	Unit		
				Min	Typ ^[1]	Max	Min	Max	
R _{ON(peak)}	ON resistance (peak)	V_I = GND to V_{CC} ; I_{SW} = 100 mA; see <u>Figure 7</u>							
		V _{CC} = 1.4 V		-	7.2	9.3	-	10	Ω
		V _{CC} = 1.65 V		-	5.4	7.3	-	8	Ω
		V _{CC} = 2.5 V		-	2.9	3.9	-	4.5	Ω
		V _{CC} = 3.0 V		-	2.4	3.4	-	4.5	Ω
		V _{CC} = 3.6 V		-	2.3	3.3	-	4.2	Ω
		V _{CC} = 4.3 V		-	2.2	3.3	-	4.2	Ω
ΔR _{ON}	ON resistance mismatch between channels	V_I = GND to V_{CC} ; I_{SW} = 100 mA	[2]						
		V _{CC} = 3.0 V		-	0.8	-	-	-	Ω
		V _{CC} = 4.3 V		-	0.7	-	-	-	Ω
R _{ON(flat)}	ON resistance (flatness)	V_I = GND to V_{CC} ; I_{SW} = 100 mA	[3]						
		V _{CC} = 1.4 V		-	4.4	-	-	-	Ω
		V _{CC} = 1.65 V		-	2.8	-	-	-	Ω
		V _{CC} = 2.5 V		-	1.0	-	-	-	Ω
		V _{CC} = 3.0 V		-	8.0	-	-	-	Ω
		V _{CC} = 3.6 V		-	0.9	-	-	-	Ω
		V _{CC} = 4.3 V		-	1.0	-	-	-	Ω

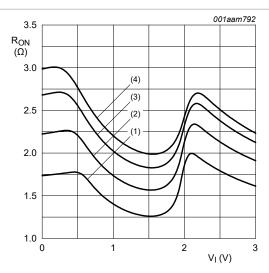
Typical values are measured at T_{amb} = 25 °C. Measured at identical V_{CC} , temperature and input voltage. Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature.


10.3 ON resistance test circuit and graphs

- 1. T_{amb} = 125 °C.
- 2. T_{amb} = 85 °C.
- 3. $T_{amb} = 25 \, ^{\circ}C$.
- 4. $T_{amb} = -40 \, ^{\circ}C$.


Figure 9. ON resistance as a function of input voltage; $V_{CC} = 1.4 \text{ V}$

- 1. T_{amb} = 125 °C.
- 2. T_{amb} = 85 °C.
- 3. T_{amb} = 25 °C.
- 4. $T_{amb} = -40 \, ^{\circ}C$.


Figure 10. ON resistance as a function of input voltage; $V_{CC} = 1.65 \text{ V}$

Dual double-pole double-throw analog switch

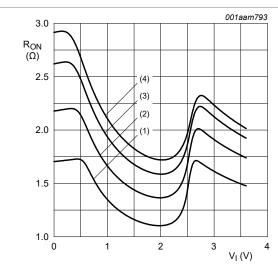

- 1. T_{amb} = 125 °C.
- 2. $T_{amb} = 85 \, ^{\circ}C$.
- 3. $T_{amb} = 25 \,^{\circ}C$.
- 4. $T_{amb} = -40 \, ^{\circ}C$.

Figure 11. ON resistance as a function of input voltage; $V_{CC} = 2.5 \text{ V}$

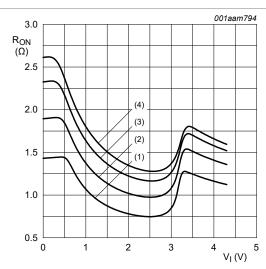

- 1. T_{amb} = 125 °C.
- 2. $T_{amb} = 85 \, ^{\circ}C$.
- 3. $T_{amb} = 25 \,^{\circ}C$.
- 4. $T_{amb} = -40 \, ^{\circ}C$.

Figure 12. ON resistance as a function of input voltage; $V_{CC} = 3.0 \text{ V}$

- 1. $T_{amb} = 125 \, ^{\circ}C$.
- 2. $T_{amb} = 85 \, ^{\circ}C$.
- 3. $T_{amb} = 25 \,^{\circ}C$.
- 4. $T_{amb} = -40 \, ^{\circ}C$.

Figure 13. ON resistance as a function of input voltage; $V_{CC} = 3.6 \text{ V}$

- 1. $T_{amb} = 125 \, ^{\circ}C$.
- 2. T_{amb} = 85 °C.
- 3. $T_{amb} = 25 \,^{\circ}C$.
- 4. $T_{amb} = -40 \, ^{\circ}C$.

Figure 14. ON resistance as a function of input voltage; V_{CC} = 4.3 V

11 Dynamic characteristics

Table 9. Dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 17.

Symbol	Parameter	Conditions		1	_{amb} = 25 °	C	T _{amb} = -40 °C to +125 °C			Unit
				Min	Typ ^[1]	Max	Min	Max (85 °C)	Max (125 °C)	
t _{en}	enable time	nS to nZ or nYn; see Figure 15								
		V _{CC} = 1.4 V to 1.6 V		-	41	90	-	120	120	ns
		V _{CC} = 1.65 V to 1.95 V		-	30	70	-	80	90	ns
		V _{CC} = 2.3 V to 2.7 V		-	20	45	-	50	55	ns
		V _{CC} = 2.7 V to 3.6 V		-	19	40	-	45	50	ns
		V _{CC} = 3.6 V to 4.3 V		-	19	40	-	45	50	ns
t _{dis}	disable time	nS to nZ or nYn; see Figure 15								
		V _{CC} = 1.4 V to 1.6 V		-	24	70	-	80	90	ns
		V _{CC} = 1.65 V to 1.95 V		-	15	55	-	60	65	ns
		V _{CC} = 2.3 V to 2.7 V		-	9	25	-	30	35	ns
		V _{CC} = 2.7 V to 3.6 V		-	8	20	-	25	30	ns
		V _{CC} = 3.6 V to 4.3 V		-	8	20	-	25	30	ns
t _{b-m}	break-before-	see Figure 16	[2]							
	make time	V _{CC} = 1.4 V to 1.6 V		-	20	-	9	-	-	ns
		V _{CC} = 1.65 V to 1.95 V		-	17	-	7	-	-	ns
		V _{CC} = 2.3 V to 2.7 V		-	13	-	4	-	-	ns
		V _{CC} = 2.7 V to 3.6 V		-	11	-	3	-	-	ns
		V _{CC} = 3.6 V to 4.3 V		-	11	-	2	-	-	ns

Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.5 V, 1.8 V, 2.5 V, 3.3 V and 4.3 V respectively. Break-before-make guaranteed by design.

Dual double-pole double-throw analog switch

11.1 Waveform and test circuits

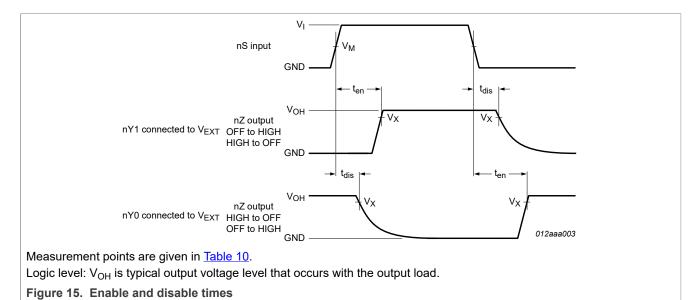
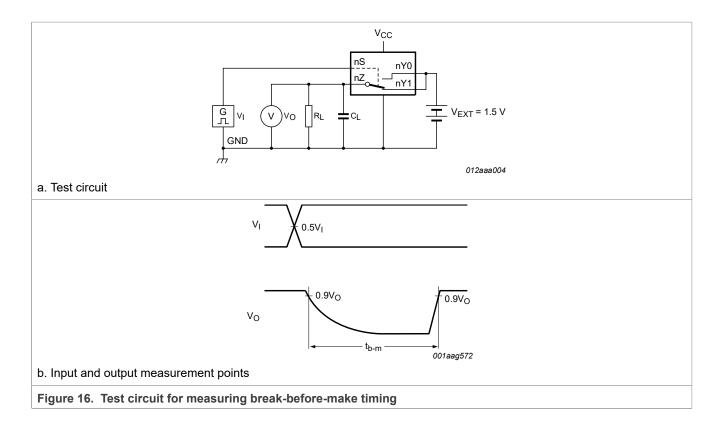
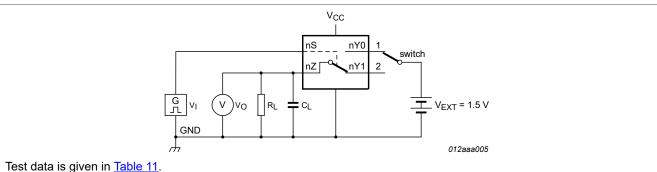




Table 10. Measurement points

Supply voltage	Input	Output
V _{CC}	V _M	V _X
1.4 V to 4.3 V	0.5V _{CC}	0.9V _{OH}

Dual double-pole double-throw analog switch

Definitions test circuit:

R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 V_{EXT} = External voltage for measuring switching times.

Figure 17. Test circuit for measuring switching times

Table 11. Test data

Supply voltage	Input		Load				
Vcc	V_{l} t_{r} , t_{f}		CL	R _L			
1.4 V to 4.3 V	V _{CC}	≤ 2.5 ns	35 pF	50 Ω			

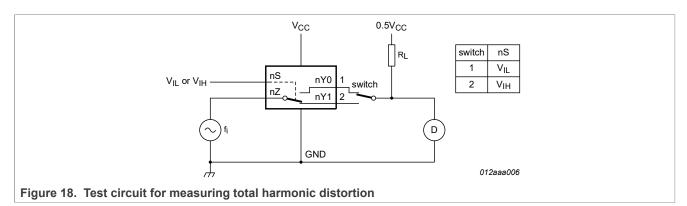
NX3DV3899

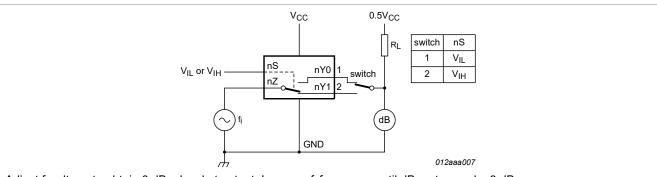
All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

11.2 Additional dynamic characteristics

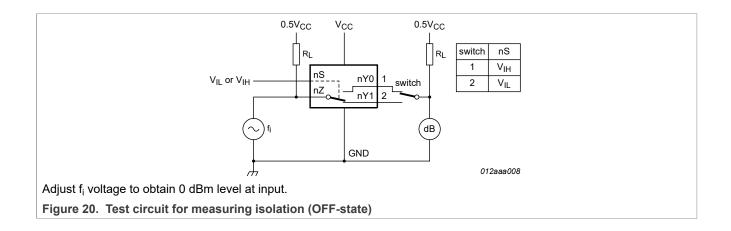
Table 12. Additional dynamic characteristics

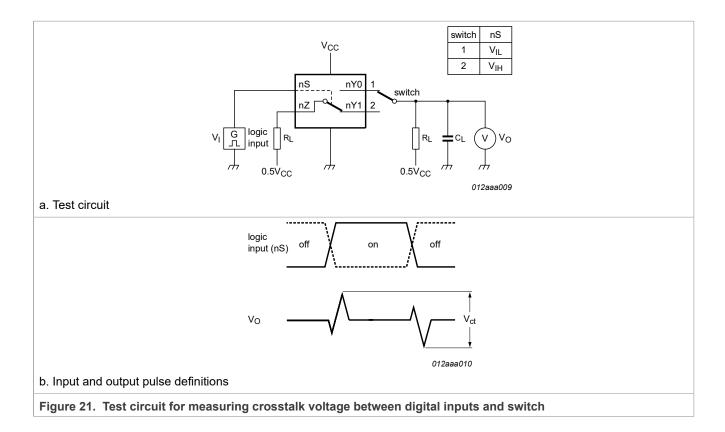

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); V_I = GND or V_{CC} (unless otherwise specified); t_r = $t_f \le 2.5$ ns; T_{amb} = 25 °C.

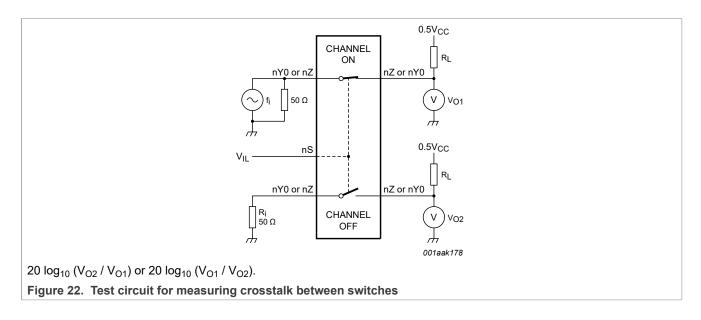

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
THD	total harmonic distortion	f_i = 20 Hz to 20 kHz; R_L = 600 Ω ; see Figure 18	[1]				
		V _{CC} = 1.4 V; V _I = 1 V (p-p)		-	0.05	-	%
		V _{CC} = 1.65 V; V _I = 1.2 V (p-p)		-	0.02	-	%
		V _{CC} = 2.3 V; V _I = 1.5 V (p-p)		-	0.01	-	%
		V _{CC} = 2.7 V; V _I = 2 V (p-p)		-	0.01	-	%
		V _{CC} = 3.6 V; V _I = 2 V (p-p)		-	0.01	-	%
		V _{CC} = 4.3 V; V _I = 2 V (p-p)		-	0.01	-	%
f _(-3dB)	-3 dB frequency response	R_L = 50 Ω; see <u>Figure 19</u>	[1]				
		V _{CC} = 1.4 V to 4.3 V		-	200	-	MHz
α_{iso}	isolation (OFF-state)	f_i = 1 MHz; R_L = 50 Ω ; see <u>Figure 20</u>	[1]				
		V _{CC} = 1.4 V to 4.3 V		-	-70	-	dB
V _{ct}	crosstalk voltage	between digital inputs and switch; f_i = 1 MHz; C_L = 50 pF; R_L = 50 Ω ; see Figure 21					
		V _{CC} = 1.4 V to 3.6 V		-	210	-	V
		V _{CC} = 3.6 V to 4.3 V		-	300	-	V
Xtalk	crosstalk	between switches; f_i = 1 MHz; R_L = 50 Ω ; see Figure 22	[1]				
		V _{CC} = 1.4 V to 4.3 V		-	-90	-	dB
Q _{inj}	charge injection	f_i = 1 MHz; C_L = 0.1 nF; R_L = 1 M Ω ; V_{gen} = 0 V; R_{gen} = 0 Ω ; see Figure 23					
		V _{CC} = 1.4 V		-	0.5	-	рС
		V _{CC} = 1.65 V		-	0.7	-	рС
		V _{CC} = 2.5 V		-	1.6	-	рС
		V _{CC} = 3.0 V		-	2.1	-	рС
		V _{CC} = 3.6 V		-	2.9	-	рС
		V _{CC} = 4.3 V		-	4.0	-	рС

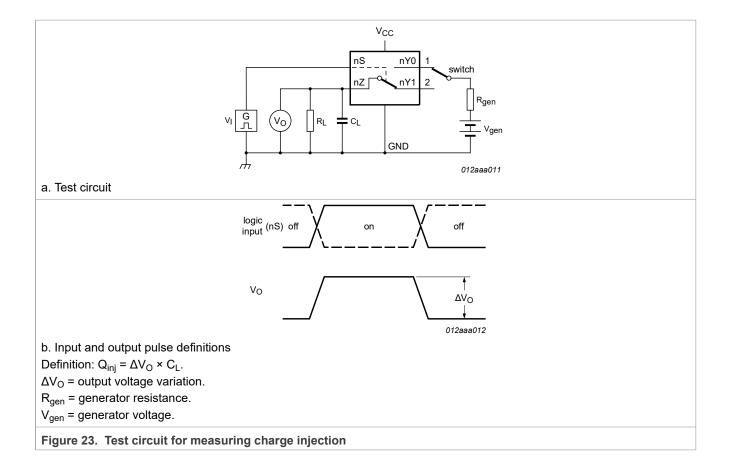
^[1] f_i is biased at $0.5V_{CC}$.

Dual double-pole double-throw analog switch

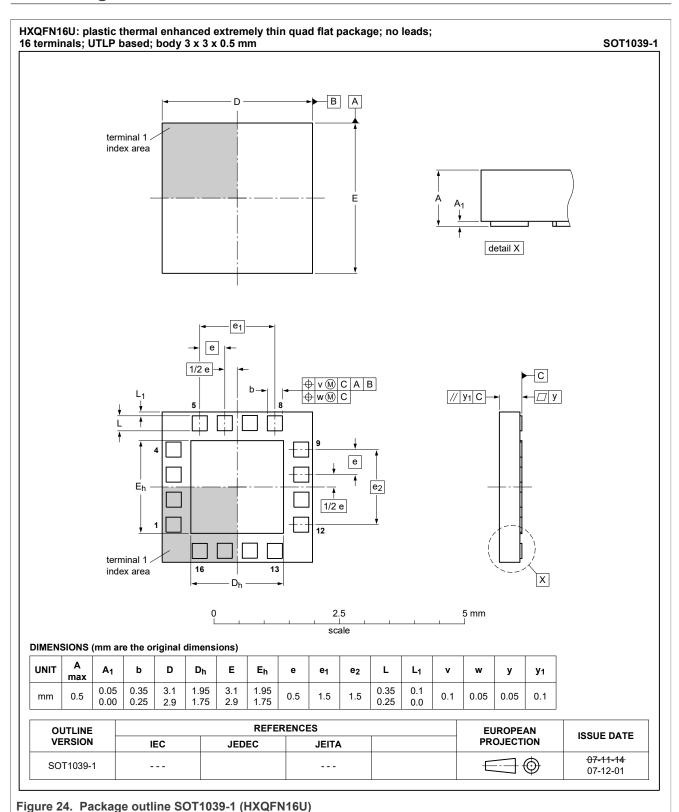

11.3 Test circuits

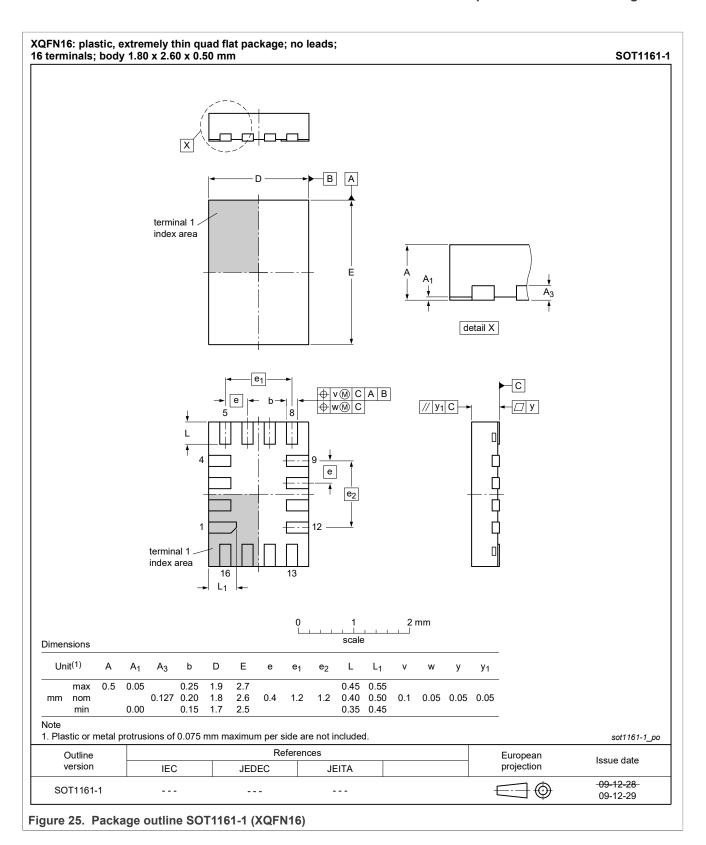



Adjust f_i voltage to obtain 0 dBm level at output. Increase f_i frequency until dB meter reads -3 dB.



Dual double-pole double-throw analog switch




Dual double-pole double-throw analog switch

12 Package outline

Dual double-pole double-throw analog switch

NX3DV3899

Dual double-pole double-throw analog switch

13 Abbreviations

Table 13. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
PDA	Personal Digital Assistant

14 Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
NX3DV3899 v.3.1	20210625	Product data sheet	-	NX3DV3899 v.3	
Modifications:	Updated Section	Updated <u>Section 4</u> .			
NX3DV3899 v.3	20111109	Product data sheet	-	NX3DV3899 v.2	
NX3DV3899 v.2	20101123	Product data sheet	-	NX3DV3899 v.1	
NX3DV3899 v.1	20101021	Product data sheet	-	-	

15 Legal information

15.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXF Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

NX3DV3899

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved

Dual double-pole double-throw analog switch

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

Dual double-pole double-throw analog switch

Tables

Tab. 1.	Ordering information2	Tab. 8.	ON resistance	7
Tab. 2.	Ordering options2	Tab. 9.	Dynamic characteristics	
Tab. 3.	Pin description4	Tab. 10.	Measurement points	
Tab. 4.	Function table4	Tab. 11.	Test data	
Tab. 5.	Limiting values4	Tab. 12.	Additional dynamic characteristics	
Tab. 6.	Recommended operating conditions5	Tab. 13.	Abbreviations	
Tab. 7.			. Revision history	
Figur	es			
Fig. 1.	Logic symbol2	Fig. 14.	ON resistance as a function of input	
Fig. 2.	Logic diagram3		voltage; VCC = 4.3 V	9
Fig. 3.	Pin configuration SOT1039-1 (HXQFN16U)3	Fig. 15.	Enable and disable times	11
Fig. 4.	Pin configuration SOT1161-1 (XQFN16)3	Fig. 16.	Test circuit for measuring break-before-	
Fig. 5.	Test circuit for measuring OFF-state		make timing	12
	leakage current6	Fig. 17.	Test circuit for measuring switching times	12
Fig. 6.	Test circuit for measuring ON-state leakage current6	Fig. 18.	Test circuit for measuring total harmonic distortion	14
Fig. 7.	Test circuit for measuring ON resistance8	Fig. 19.	Test circuit for measuring the frequency	
Fig. 8.	Typical ON resistance as a function of input	Ü	response when channel is in ON-state	14
Ü	voltage8	Fig. 20.	Test circuit for measuring isolation (OFF-	
Fig. 9.	ON resistance as a function of input	· ·	state)	14
•	voltage; VCC = 1.4 V8	Fig. 21.	Test circuit for measuring crosstalk voltage	
Fig. 10.	ON resistance as a function of input		between digital inputs and switch	15
	voltage; VCC = 1.65 V8	Fig. 22.	Test circuit for measuring crosstalk	
Fig. 11.	ON resistance as a function of input		between switches	15
	voltage; VCC = 2.5 V9	Fig. 23.	Test circuit for measuring charge injection	16
Fig. 12.	ON resistance as a function of input	Fig. 24.	Package outline SOT1039-1 (HXQFN16U).	17
	voltage; VCC = 3.0 V9	Fig. 25.	Package outline SOT1161-1 (XQFN16)	18
Fig. 13.	ON resistance as a function of input			
	voltage; VCC = 3.6 V9			