

F1-4PACK SIC MOSFET Module

Product Preview

NXH040F120MNF1PTG, NXH040F120MNF1PG

The NXH040F120MNF1 is a power module containing an $40~\text{m}\Omega/1200~\text{V}$ SiC MOSFET full bridge and a thermistor in an F1 package.

Features

- $40 \text{ m}\Omega/1200 \text{ V SiC MOSFET Half-Bridge}$
- Thermistor
- Options with Pre-Applied Thermal Interface Material (TIM) and without Pre-Applied TIM
- Press-Fit Pins
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

Typical Applications

- Solar Inverter
- Uninterruptible Power Supplies
- Electric Vehicle Charging Stations
- Industrial Power

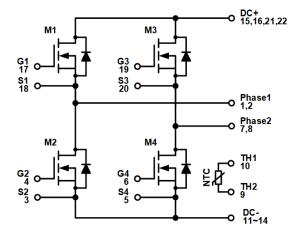
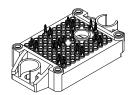
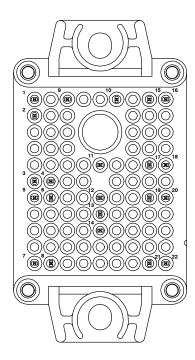



Figure 1. NXH040F120MNF1 Schematic Diagram

This document contains information on a product under development. **onsemi** reserves the right to change or discontinue this product without notice.

PACKAGE PICTURE


PIM22 33.8x42.5 (PRESS FIT) CASE 180BX

MARKING DIAGRAM

XXXXX = Specific Device Code
AT = Assembly & Test Site Code
YWW = Year and Work Week Code

PIN CONNECTIONS

See Pin Function Description for pin names

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

PIN FUNCTION DESCRIPTION

Pin	Name	Description	
1	Phase 1	Center point of M1 and M2	
2	Phase 1	Center point of M1 and M2	
3	S2	M2 Kelvin Emitter (High side switch)	
4	G2	M2 Gate (High side switch)	
5	S4	M4 Kelvin Emitter (High side switch)	
6	G4	M4 Gate (High side switch)	
7	AC2	Center point of M3 and M4	
8	AC2	Center point of M3 and M4	
9	TH2	Thermistor Connection 2	
10	TH1	Thermistor Connection 1	
11	DC-	DC Negative Bus connection	
12	DC-	DC Negative Bus connection	
13	DC-	DC Negative Bus connection	
14	DC-	DC Negative Bus connection	
15	DC+	DC Positive Bus connection	
16	DC+	DC Positive Bus connection	
17	G1	M1 Gate (High side switch)	
18	S1	M1 Kelvin Emitter (High side switch)	
19	G3	M3 Gate (Low side switch)	
20	S3	M3 Kelvin Emitter (High side switch)	
21	DC+	DC Positive Bus connection	
22	DC+	DC Positive Bus connection	

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
SIC MOSFET	•		•
Drain-Source Voltage	V_{DSS}	1200	V
Gate-Source Voltage	V_{GS}	+25/–15	V
Continuous Drain Current @ T _C = 80°C (T _J = 175°C)	I _D	30	Α
Pulsed Drain Current (T _J = 175°C)	I _{Dpulse}	90	Α
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	74	W
Short Circuit Withstand Time @ V_{GE} = 15 V, V_{CE} = 600 V, $T_{J} \le$ 150°C	T _{sc}	TBD	μs
Minimum Operating Junction Temperature	T_{JMIN}	-40	°C
Maximum Operating Junction Temperature	T_{JMAX}	175	°C
THERMAL PROPERTIES			
Storage Temperature Range	T _{stg}	-40 to 150	°C
INSULATION PROPERTIES			
Isolation Test Voltage, t = 1 s, 60 Hz	V _{is}	4800	V _{RMS}
Creepage Distance		12.7	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

^{1.} Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	T _J	-40	175	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS

T_{,I} = 25 °C unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SIC MOSFET CHARACTERISTICS	•					
Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 200 μA	V _{(BR)DSS}	1200	_	_	V
Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 1200 V	I _{DSS}	-	-	100	μΑ
Drain-Source On Resistance	V _{GS} = 20 V, I _D = 25 A, T _J = 25°C	R _{DS(ON)}	=	42	56	mΩ
	V _{GS} = 20 V, I _D = 25 A, T _J = 125°C		=	55	_	
	V _{GS} = 20 V, I _D = 25 A, T _J = 150°C	150°C		61	_	
Gate-Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 10 \text{ mA}$	V _{GS(TH)}	1.8	2.81	4.3	V
Gate Leakage Current	V _{GS} = -10 V/20 V, V _{DS} = 0 V	I _{GSS}	-500	-	500	nA
Input Capacitance	V _{DS} = 800 V, V _{GS} = 0 V, f = 1 MHz	C _{ISS}	=	1 505	_	pF
Reverse Transfer Capacitance	7	C _{RSS}	=	12	_	
Output Capacitance	7	C _{OSS}	=	159	_	
Total Gate Charge	V _{DS} = 800 V, V _{GS} = 20 V, I _D = 25 A	Q _{G(TOTAL)}	=	122.1	=	nC
Gate-Source Charge	7	Q _{GS}	=	32.2	_	nC
Gate-Drain Charge	7	Q _{GD}	=	34.7	_	nC
Turn-on Delay Time	T _J = 25°C,	t _{d(on)}	=	30.8	_	ns
Rise Time	$V_{DS} = 600 \text{ V}, I_D = 25 \text{ A}, V_{GS} = -5 \text{ V}/18 \text{ V}, R_G = 2.2 \Omega$	t _r	=	3.04	_	
Turn-off Delay Time		t _{d(off)}	=	59.8	_	
Fall Time	7	t _f	=	7.42	_	
Turn-on Switching Loss per Pulse	7	E _{ON}	=	0.06	_	mJ
Turn off Switching Loss per Pulse	7	E _{OFF}	=	0.10	_	
Turn-on Delay Time	T _J = 150°C,	t _{d(on)}	=	30.2	_	ns
Rise Time	$V_{DS} = 600 \text{ V}, I_D = 25 \text{ A}, V_{GS} = -5 \text{ V}/18 \text{ V}, R_G = 2.2 \Omega$	t _r	=	3.19	_	1
Turn-off Delay Time	7	t _{d(off)}	=	64.4	_	
Fall Time	7	t _f	=	5.83	_	
Turn-on Switching Loss per Pulse	7	E _{ON}	=	0.05	_	mJ
Turn off Switching Loss per Pulse	7	E _{OFF}	-	0.12	_	
Diode Forward Voltage	I _D = 25 A, T _J = 25°C	V _{SD}	-	3.97	6	V
	I _D = 25 A, T _J = 125°C		=	3.52	_	
	I _D = 25 A, T _J = 150°C		=	3.44	_	
Reverse Recovery Time	T _J = 25°C,	t _{rr}	=	18.25	=	ns
Reverse Recovery Charge	$V_{DS} = 600 \text{ V}, I_D = 25 \text{ A}, V_{GS} = -5 \text{ V}/18 \text{ V}, R_G = 2.2 \Omega$	Q _{rr}	-	700	=	nC
Peak Reverse Recovery Current		I _{RRM}	-	61	=	Α
Peak Rate of Fall of Recovery Current	te of Fall of Recovery Current		-	7629	=	A/μs
Reverse Recovery Energy		E _{rr}	-	405	_	μJ

ELECTRICAL CHARACTERISTICS (continued)

 T_J = 25 °C unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SIC MOSFET CHARACTERISTICS						
Reverse Recovery Time	T _J = 25°C,	t _{rr}	_	20.81	-	ns
Reverse Recovery Charge	$V_{DS} = 600 \text{ V}, I_D = 25 \text{ A},$ $V_{GS} = -5 \text{ V}/18 \text{ V}, R_G = 2.2 \Omega$	Q _{rr}	_	1250	-	nC
Peak Reverse Recovery Current	7	I _{RRM}	_	97	-	Α
Peak Rate of Fall of Recovery Current	7	di/dt	_	11 414	-	A/μs
Reverse Recovery Energy	7	E _{rr}	_	753	-	μЈ
Thermal Resistance - Chip-to-Case	M1, M2, M3, M4	R_{thJC}	1	0.8356	ı	°C/W
Thermal Resistance - Chip-to-Heatsink	Thermal grease, Thickness = 2 Mil ±2%, A = 2.8 W/mK	R _{thJH}	-	1.291	=	°C/W
THERMISTOR CHARACTERISTICS		•				•
Nominal Resistance	T = 25°C	R ₂₅	-	5	-	kΩ
Nominal Resistance	T = 100°C	R ₁₀₀	1	457	ı	Ω
Deviation of R25		ΔR/R	-3	_	3	%
Power Dissipation		P _D	1	50	ı	mW
Power Dissipation Constant			-	5		mW/K
B-value	B(25/50), tolerance ±3%		_	3 375	_	K
B-value	B(25/100), tolerance ±3%			3 455	-	K

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH040F120MNF1PTG	NXH040F120MNF1PTG	F1-4PACK Press-fit Pins with pre-applied thermal interface material (TIM) (Pb-Free and Halide-Free)	28 Units / Blister Tray
NXH040F120MNF1PG	NXH040F120MNF1PG	F1-4PACK Press-fit Pins (Pb-Free and Halide-Free)	28 Units / Blister Tray

TYPICAL CHARACTERISTICS

(25°C unless otherwise noted)

50

45

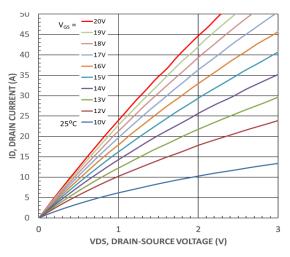
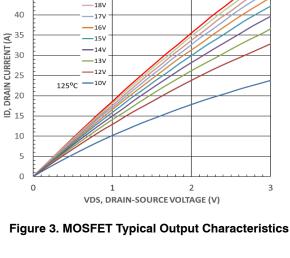



Figure 2. MOSFET Typical Output Characteristics

-20V

-19V

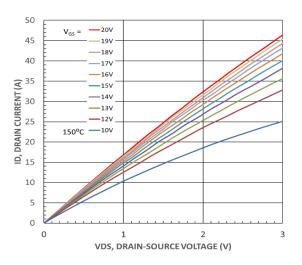


Figure 4. MOSFET Typical Output Characteristics

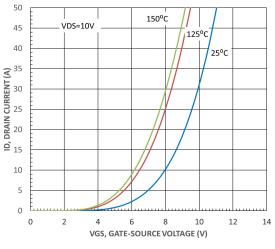


Figure 5. MOSFET Typical Transfer Characteristics

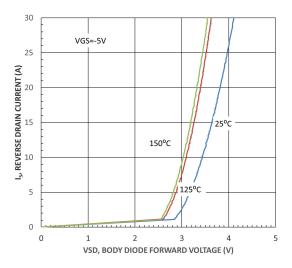


Figure 6. Body Diode Forward Characteristic

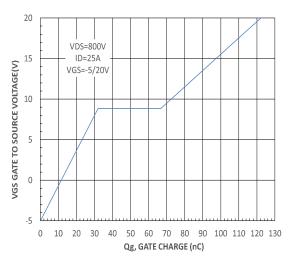


Figure 7. Gate-to-Source Voltage vs. Total Charge

TYPICAL CHARACTERISTICS (Continued)

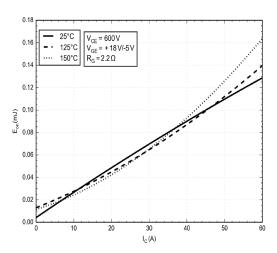


Figure 8. Typical Switching Loss EON vs. IC

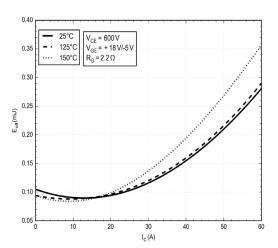


Figure 10. Typical Switching Loss E_{OFF} vs. I_C

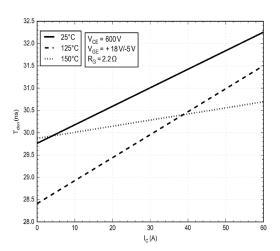


Figure 12. Typical Turn–On Switching T_{don} vs. I_{C}

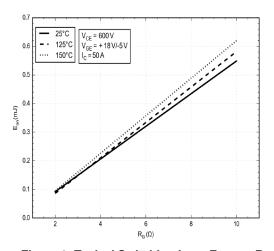


Figure 9. Typical Switching Loss $E_{\mbox{ON}}$ vs. $R_{\mbox{G}}$

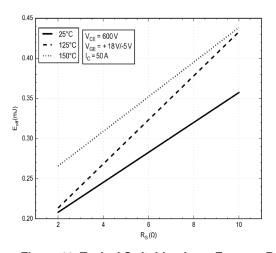


Figure 11. Typical Switching Loss E_{OFF} vs. R_G

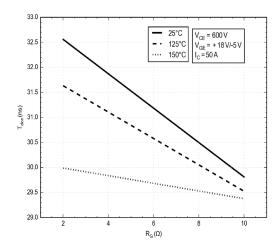


Figure 13. Typical Turn-On Switching T_{don} vs. R_G

TYPICAL CHARACTERISTICS (Continued)

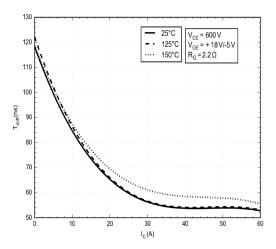


Figure 14. Typical Turn-Off Switching T_{doff} vs. I_{C}

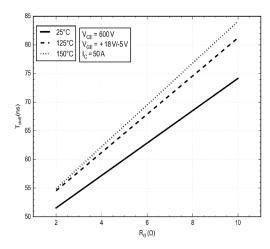


Figure 15. Typical Turn-Off Switching T_{doff} vs. R_{G}

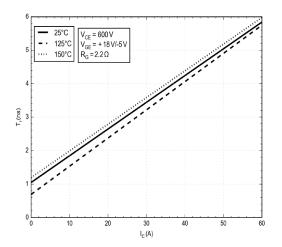


Figure 16. Typical Turn-On Switching T_r vs. I_C

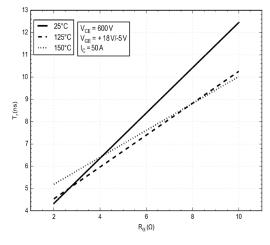


Figure 17. Typical Turn-On Switching T_r vs. R_G

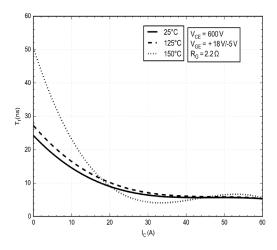


Figure 18. Typical Turn-Off Switching Tf vs. IC

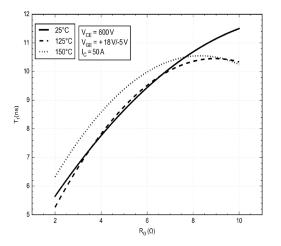


Figure 19. Typical Turn-Off Switching Tf vs. RG

TYPICAL CHARACTERISTICS (Continued)



Figure 20. Typical Reverse Recovery Energy vs. I_C

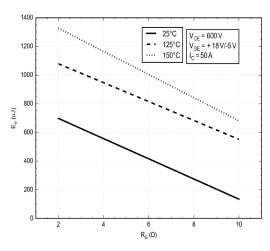


Figure 21. Typical Reverse Recovery Energy vs. R_G

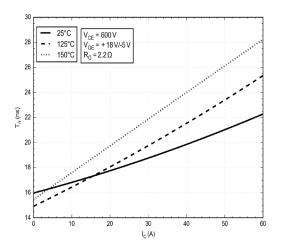


Figure 22. Typical Reverse Recovery Time vs. I_C

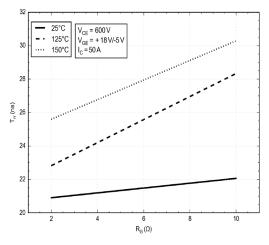


Figure 23. Typical Reverse Recovery Time vs. R_G

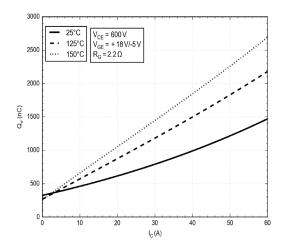


Figure 24. Typical Reverse Recovery Charge vs. $I_{\mathbb{C}}$

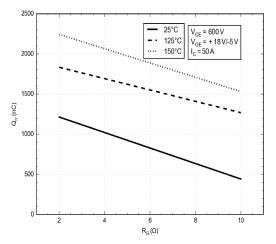


Figure 25. Typical Reverse Recovery Charge vs. R_G

TYPICAL CHARACTERISTICS (Continued)

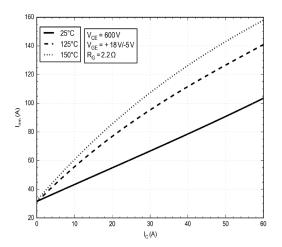


Figure 26. Typical Reverse Recovery Current vs. $I_{\mathbb{C}}$

Figure 27. Typical Reverse Recovery Current vs. R_G

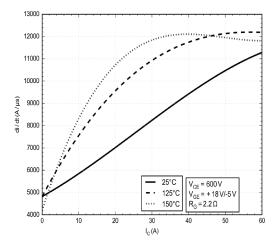


Figure 28. Typical di/dt vs. I_C

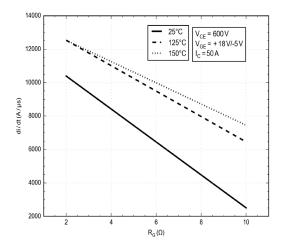


Figure 29. Typical di/dt vs. R_G

TYPICAL CHARACTERISTICS (Continued)

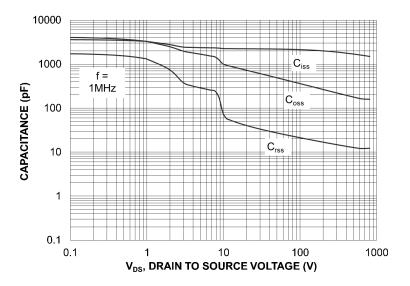


Figure 30. Capacitance vs. Drain-to-Source Voltage

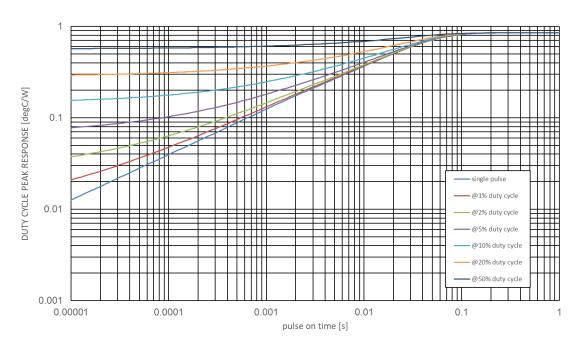


Figure 31. MOSFET Junction-to-Case Transient Thermal Impedance

Table 1. FOSTER NETWORKS - M1, M2, M3, M4

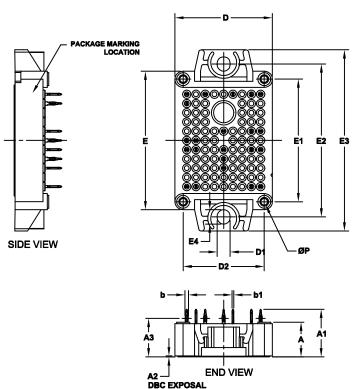
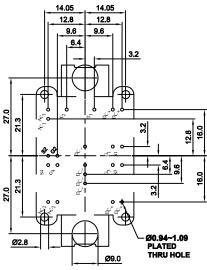

Foster	M1	M1, M3		M4
Element #	Rth (K/W)	Cth (Ws/K)	Rth (K/W)	Cth (Ws/K)
1	0.051996	0.002404	0.054881	0.002284
2	0.046504	0.020373	0.010554	0.082427
3	0.008903	0.221087	0.064895	0.028973
4	0.165341	0.039489	0.094862	0.058574
5	0.600991	0.065660	0.610507	0.052914

Table 2. CAUER NETWORKS - M1, M2, M3, M4

Cauer	M1, M3		M2, M4	
Element #	Rth (K/W)	Cth (Ws/K)	Rth (K/W)	Cth (Ws/K)
1	0.076857	0.001961	0.076754	0.001921
2	0.141063	0.010485	0.182594	0.011596
3	0.274014	0.018050	0.136313	0.018196
4	0.113973	0.038620	0.215815	0.019717
5	0.267827	0.046224	0.224225	0.049799

PACKAGE DIMENSIONS


PIM22 33.8x42.5 (PRESS FIT) CASE 180BX ISSUE A

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETERS
- 2. PIN POSITION TOLERANCE IS ± 0.4mm

	MILLIMETERS				
DIM	MIN.	NOM.	MAX.		
A	11.65	12.00	12.35		
A1	16.00	16.50	17.00		
A2	0.00	0.35	0.60		
A3	12.85	13.35	13.85		
b	1.15	1.20	1.25		
b1	0.59	0.64	0.69		
D	33.50	33.80	34.10		
D1	4.40	4.50	4.60		
D2	27.95	28.10	28.25		
E	47.70	48.00	48.30		
E1	42.35	42.50	42.65		
E2	52.90	53.00	53.10		
E3	62.30	62.80	63.30		
E4	4.90	5.00	5.10		
P	2.20	2.30	2.40		

RECOMMENDED MOUNTING PATTERN