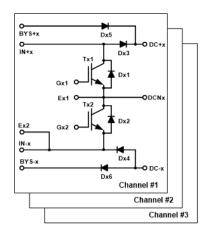
onsemi

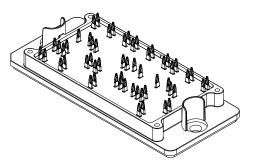
Q2BOOST Module

NXH450B100H4Q2F2, NXH450B100H4Q2F2PG-R

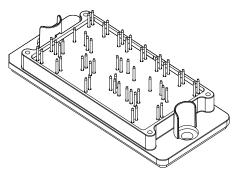
Description

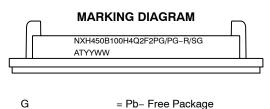

The NXH450B100H4Q2 is a Si/SiC Hybrid three channel symmetric boost module. Each channel contains two 1000 V, 150 A IGBTs, two 1200 V, 30 A SiC diodes and two 1600 V, 30 A bypass diodes. The module contains an NTC thermistor.

Features


- Silicon/SiC Hybrid Technology Maximizes Power Density
- Low Switching Loss Reduces System Power Dissipation
- Low Inductive Layout
- Press-fit and Solder Pin Options
- This Device is Pb-Free, Halogen Free and is RoHS Compliant

Typical Applications


- Solar Inverter
- Uninterruptible Power Supplies



Q2BOOST 3-CHANNEL PRESS FIT PINS CASE 180BG

Q2BOOST 3-CHANNEL SOLDER PINS CASE 180BR

AT = Assembly & Test Site Code YYWW = Year and Work Week Code NXH450B100H4Q2F2PG/PG-R/SG = Specific Device Code

PIN CONNECTIONS

See details pin connections on page 2 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

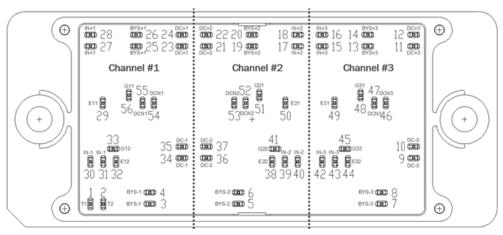


Figure 2. Pins Assignments

ABSOLUTE MAXIMUM RATINGS (Note 1) (T_j = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
IGBT (Tx1, Tx2)			
Collector-Emitter Voltage	V _{CES}	1000	V
Gate-Emitter Voltage Positive Transient Gate-Emitter Voltage (Tpulse = 5 μs, D < 0.10)	V _{GE}	±20 30	V
Continuous Collector Current (@ V _{GE} = 20 V, T _c = 80°C)	Ι _C	101	А
Pulsed Peak Collector Current @ Tc = $80^{\circ}C$ (T _J = $150^{\circ}C$)	I _{C(Pulse)}	303	А
Power Dissipation (T _C = 80°C, T _J = 150°C)	P _{tot}	234	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature (Note 2)	T _{JMAX}	150	°C
IGBT INVERSE DIODE (Dx1, Dx2) AND BYPASS DIODE (Dx5, Dx6)			
Peak Repetitive Reverse Voltage	V _{RRM}	1600	V
Continuous Forward Current @ $T_C = 80^{\circ}C$	١ _F	36	А
Repetitive Peak Forward Current (T _J = 150°C, T _J limited by T _{Jmax})	I _{FRM}	108	А
Maximum Power Dissipation @ T_C = 80°C (T_J = 150°C)	P _{tot}	79	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
SILICON CARBIDE SCHOTTKY DIODE (Dx3, Dx4)			
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Continuous Forward Current @ T _C = 80°C	I _F	36	А
Repetitive Peak Forward Current (T _J = 150°C, T _J limited by T _{Jmax})	I _{FRM}	108	А
Maximum Power Dissipation @ T_C = 80°C (T_J = 150 °C)	P _{tot}	104	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

Operating parameters.

2. Qualification at 175°C per discrete TO247.

THERMAL AND INSULATION PROPERTIES (Note 3) (T_j = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
THERMAL PROPERTIES			
Operating Temperature under Switching Condition	T _{VJOP}	–40 to (Tjmax – 25)	°C
Storage Temperature Range	T _{stg}	-40 to 125	°C
THERMAL PROPERTIES			
Isolation Test Voltage, t = 2 sec, 50 Hz (Note 4)	V _{is}	4000	V _{RMS}
Creepage Distance		12.7	Mm
Comparative Tracking Index	СТІ	>600	

3. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.
4. 4000 VAC_{RMS} for 1 second duration is equivalent to 3333 VAC_{RMS} for 1 minute duration.

ELECTRICAL CHARACTERISTICS (Note 5) ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
IGBT (Tx1, Tx2)						
Collector-Emitter Breakdown Voltage	V_{GE} = 0 V, I _C =2 mA	V _{(BR)CES}	1000	-	-	V
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 150 A, T _C = 25°C			1.70	2.25	V
	V_{GE} = 15 V, I _C = 150 A, T _C = 150°C		-	2.03	-	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 150 \text{ mA}$	V _{GE(TH)}	4.1	4.66	5.7	V
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1000 V	I _{CES}	-	-	600	μA
Gate Leakage Current	V_{GE} = ±20 V, V_{CE} = 0 V	I _{GES}	-	-	±800	nA
Turn-On Delay Time	T _j = 25°C V _{CE} = 600 V, I _C = 50 A	t _{d(on)}	-	28	-	ns
Rise Time	$V_{GE} = -8 V$, +15 V, $R_{G} = 4 \Omega$	t _r	-	10	-	-
Turn-Off Delay Time		t _{d(off)}	-	157	-	
Fall time		t _f	-	22	-	
Turn on Switching Loss		E _{on}	-	403	-	μJ
Turn off Switching Loss		E _{off}	-	1651	-	
Turn–On Delay Time	T _j = 125°C V _{CE} = 600 V, I _C = 50 A	t _{d(on)}	-	27	-	ns
Rise Time	$V_{GE} = -8 V$, +15 V, $R_{G} = 4 \Omega$	t _r	-	12	_	
Turn–Off Delay Time		t _{d(off)}	-	192	-	
Fall time		t _f	-	32	-	
Turn on Switching Loss		E _{on}	-	594	-	μJ
Turn off Switching Loss		E _{off}	-	2138	_	
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{ies}	-	9342	_	pF
Output Capacitance		C _{oes}	-	328	_	
Reverse Transfer Capacitance		C _{res}	-	52	_	
Gate Charge	$V_{CE} = 600 \text{ V}, \text{ V}_{GE} = 15 \text{ V},$ $I_{C} = 75 \text{ A}$	Qg	-	252	_	nC
Thermal Resistance – Chip-to-Heatsink	Thermal grease,	R _{thJH}	-	0.45	-	K/W
Thermal Resistance - Chip-to-Case	Thickness = 2.1 Mil \pm 2% λ = 2.9 W/mK	R _{thJC}	-	0.30	_	K/W
GBT INVERSE DIODE (Dx1, Dx2) AND BYPA	ASS DIODE (Dx5, Dx6)					
Diode Forward Voltage	I _F = 30 A, T _J = 25°C	V _F	-	1.04	1.7	V
	I _F = 30 A, T _J = 150°C		-	0.94	-	
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil ± 2%	R _{thJH}	-	1.09	-	K/W
Thermal Resistance - Chin-to-Case	$\lambda = 2.9 \text{ W/mK}$	P e	1	0.80	1	KVV

K/W

_

R_{thJC}

0.89

_

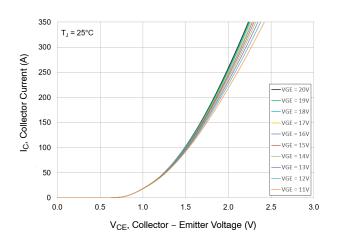
 $\lambda = 2.9 \text{ W/mK}$

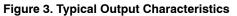
Thermal Resistance - Chip-to-Case

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SIC DIODE (Dx3, Dx4)						
Diode Reverse Leakage Current	V _R = 1200 V, T _J = 25°C	I _R	-	-	600	μA
Diode Forward Voltage	I _F = 30 A, T _J = 25°C	V _F	-	1.42	1.7	V
	I _F = 30 A, T _J = 150°C	$I_{\rm F} = 30 \text{ A}, \text{ T}_{\rm J} = 150^{\circ}\text{C}$		1.85	-	
Reverse Recovery Time	$T_J = 25^{\circ}C$	t _{rr}	-	20	-	ns
Reverse Recovery Charge	$V_{DS} = 600 \text{ V}, \text{ I}_{C} = 50 \text{ A}$ $V_{GF} = -8 \text{ V}, 15 \text{ V}, \text{ R}_{G} = 4 \Omega$	Q _{rr}	-	88	_	nC
Peak Reverse Recovery Current		I _{RRM}	-	10	_	А
Peak Rate of Fall of Recovery Current		di/dt	-	4200	_	A/μs
Reverse Recovery Energy		E _{rr}	-	38	_	μJ
Reverse Recovery Time	T _J = 125°C	t _{rr}	-	19	_	ns
Reverse Recovery Charge	$V_{DS} = 600 \text{ V}, \text{ I}_{C} = 50 \text{ A}$ $V_{GE} = -8 \text{ V}, 15 \text{ V}, \text{ R}_{G} = 4 \Omega$	Q _{rr}	-	87	_	nC
Peak Reverse Recovery Current		I _{RRM}	-	9	_	А
Peak Rate of Fall of Recovery Current		di/dt	-	3154	_	A/μs
Reverse Recovery Energy		E _{rr}	-	35	-	μJ
Thermal Resistance - Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil ± 2%	R _{thJH}	-	0.97	_	K/W
Thermal Resistance - Chip-to-Case	$\lambda = 2.9 \text{ W/mK}$	Rt _{hJC}	-	0.67	_	K/W

THERMISTOR CHARACTERISTICS

Nominal Resistance		R ₂₅	-	22	-	kΩ
Nominal Resistance	T = 100°C	R ₁₀₀	-	1486	-	Ω
Deviation of R25		$\Delta R/R$	-5	-	5	%
Power Dissipation		PD	-	200	-	mW
Power Dissipation Constant			-	2	-	mW/K
B-Value	B (25/50), tolerance $\pm 3\%$		-	3950	-	К
B-Value	B (25/100), tolerance ±3%		-	3998	-	К


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


5. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

PACKAGE MARKING AND ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
,	NXH450B100H4Q2F2PG, NXH450B100H4Q2F2PG-R	Q2BOOST – Case 180BG (Pb-Free and Halide-Free Press Fit Pins)	12 Units / Blister Tray
NXH450B100H4Q2F2SG SOLDER PINS	NXH450B100H4Q2F2SG	Q2BOOST – Case 180BR (Pb–Free and Halide–Free Solder Pins)	12 Units / Blister Tray

TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND BOOST DIODE

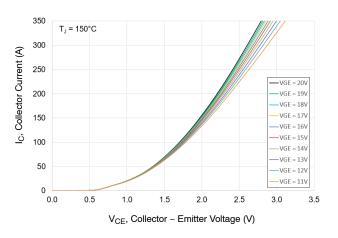


Figure 4. Typical Output Characteristics

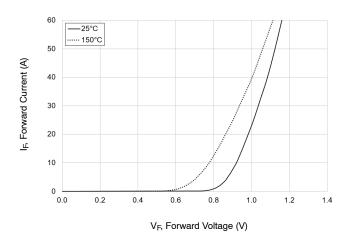
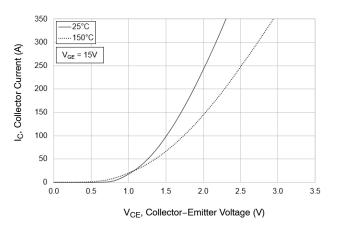
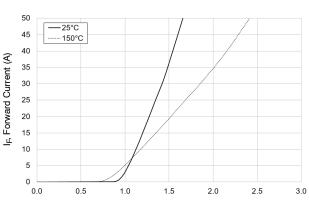
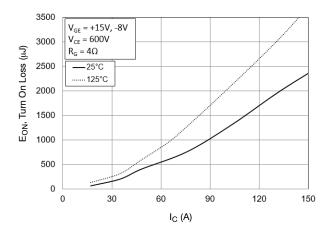
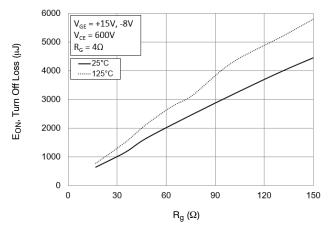



Figure 5. Transfer Characteristics


Figure 6. Typical Saturation Voltage Characteristics


V_F, Forward Voltage (V)

TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND BOOST DIODE (continued)

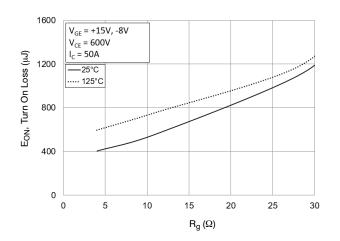
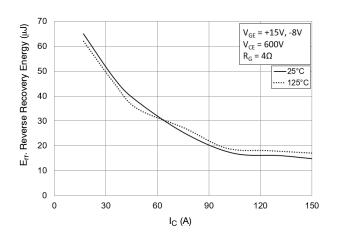



Figure 11. Typical Turn On Loss vs. R_G

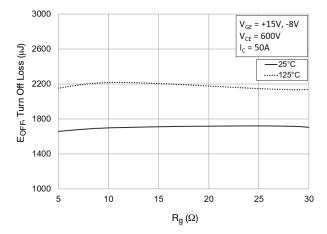
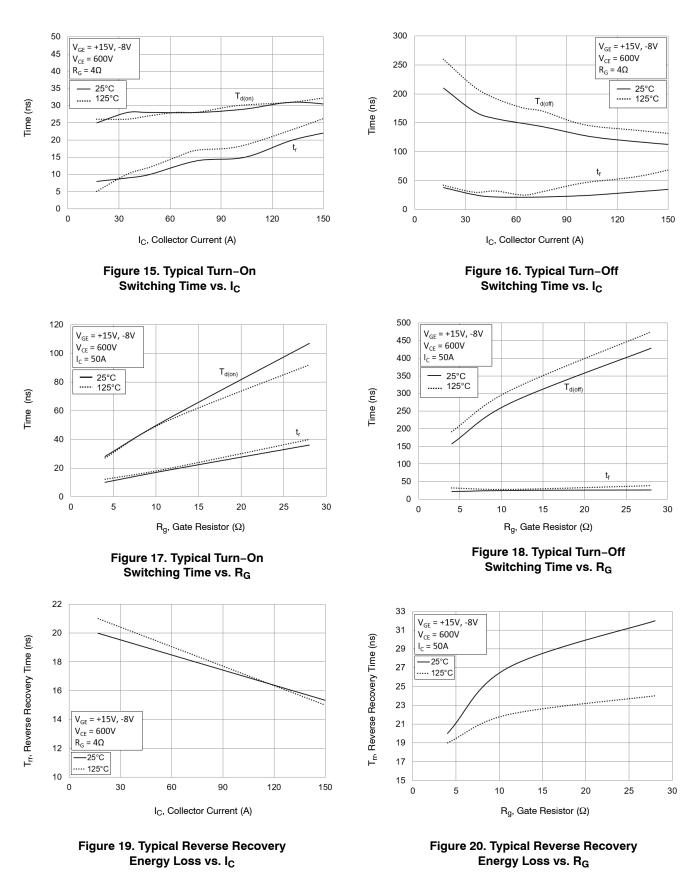
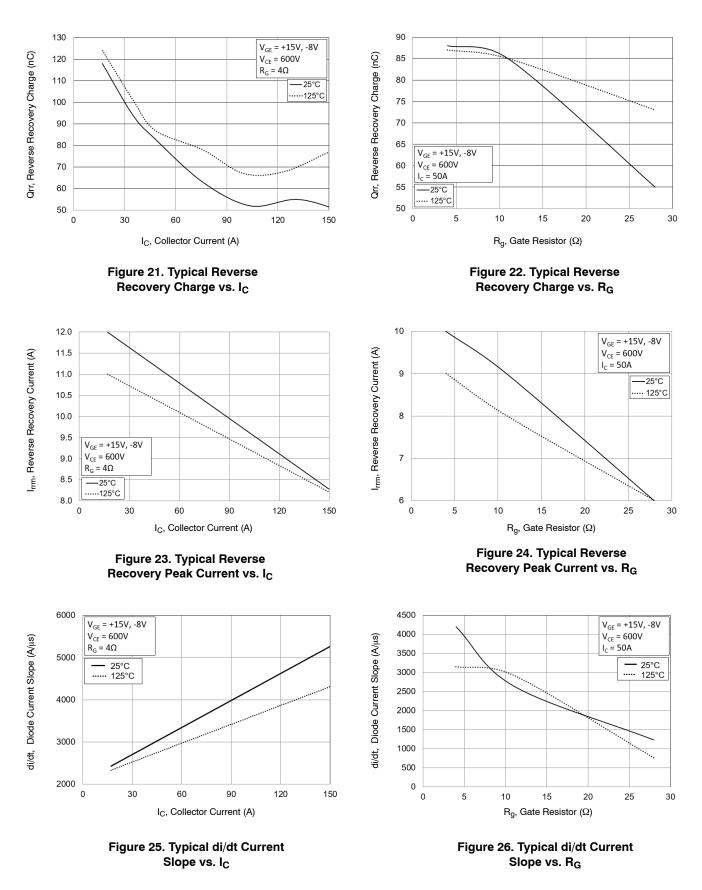
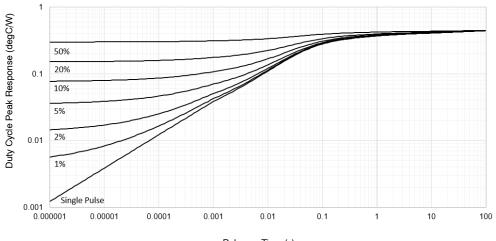



Figure 12. Typical Turn Off Loss vs. R_G




TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND BOOST DIODE (continued)

TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND BOOST DIODE (continued)

TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND BOOST DIODE (continued)

Pulse on Time (s)

Figure 27. Transient Thermal Impedance – IGBT

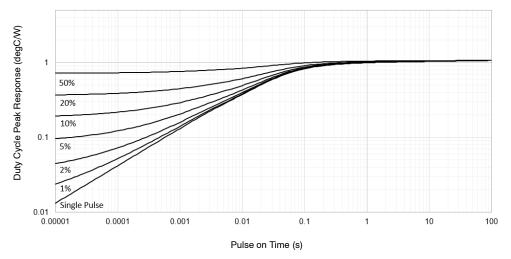


Figure 28. Transient Thermal Impedance – Inverse Diode

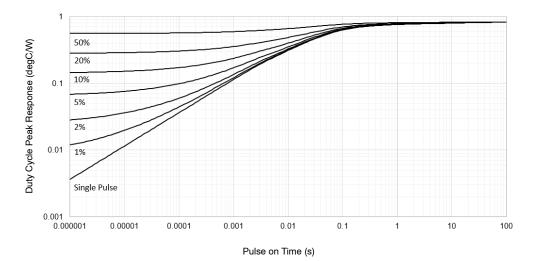
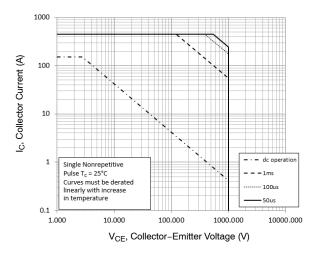



Figure 29. Transient Thermal Impedance – Boost Diode

TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND BOOST DIODE (continued)

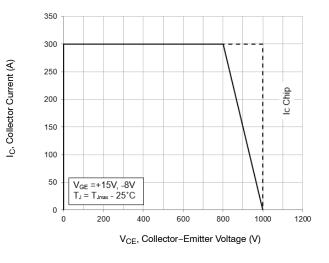
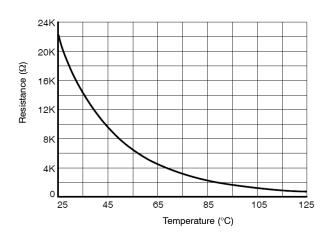
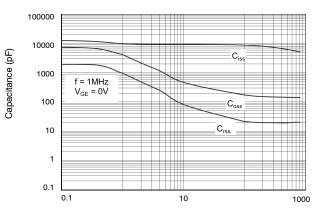
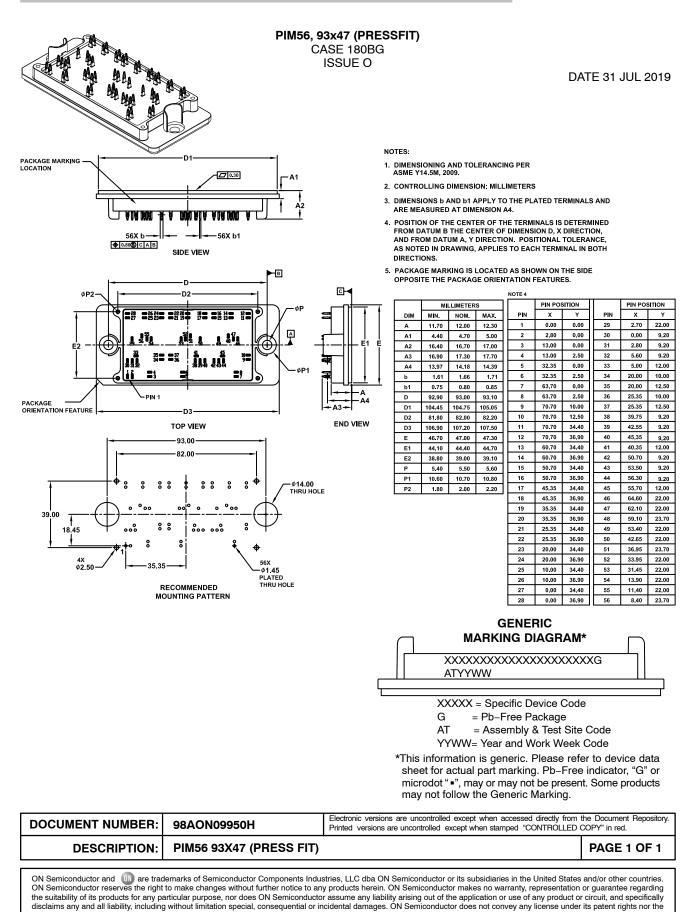


Figure 31. Reverse Safe Operating Area

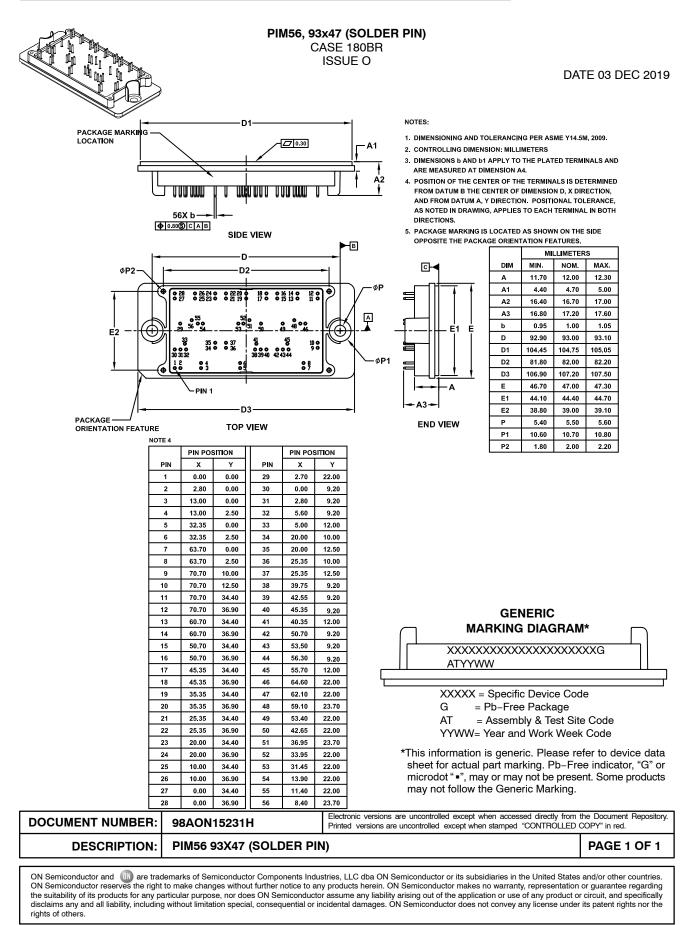


Figure 32. Gate Voltage vs. Gate Charge


Figure 34. NTC Characteristics

V_{CE}, Collector to Emitter Voltage (V)


Figure 33. Capacitance Charge

rights of others.

