Dual Boost Power Module

Product Preview NXH80B120MNQ0SNG

The NXH80B120MNQ0SNG is a power module containing a dual boost stage. The integrated SiC MOSFETs and SiC Diodes provide lower conduction losses and switching losses, enabling designers to achieve high efficiency and superior reliability.

Features

- 1200 V 80 m Ω SiC MOSFETs
- Low Reverse Recovery and Fast Switching SiC Diodes
- 1600 V Bypass and Anti-parallel Diodes
- Low Inductive Layout
- Solderable Pins
- Thermistor
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Solar Inverters
- Uninterruptable Power Supplies

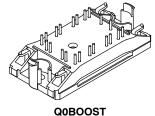
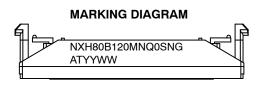
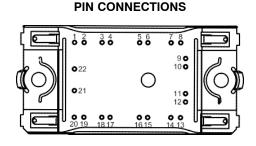


Figure 1. NXH80B120MNQ0SNG Schematic Diagram



ON Semiconductor®


www.onsemi.com

CASE 180AJ SOLDER PINS

G = Pb-Free Package AT = Assembly & Test Site Code YYWW = Year and Work Week Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ABSOLUTE MAXIMUM RATINGS (Note 1) $T_J = 25^{\circ}C$ unless otherwise noted

Rating	Symbol	Value	Unit
BOOST MOSFET			
Drain-Source Voltage	V _{DS}	1200	V
Gate-Source Voltage	V _{GS}	-15/+25	V
Continuous Drain Current (@ V_{GS} = 20 V, T_{C} = 80°C)	۱ _D	23	А
Pulsed Drain Current @ T _C = 80°C (T _J = 175°C)	I _{D(Pulse)}	69	А
Maximum Power Dissipation @ T_{C} = 80°C	P _{tot}	69	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C
BOOST DIODE			•
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Continuous Forward Current @ T _C = 80°C	١ _F	31	А
Surge Forward Current (60 Hz single half-sine wave)	I _{FSM}	93	А
Maximum Power Dissipation @ T_{C} = 80°C (T_{J} = 175°C)	P _{tot}	97	W
² t – value (60 Hz single half-sine wave)	l ² t	19	A ² s
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C
BYPASS DIODE			
Peak Repetitive Reverse Voltage	V _{RRM}	1600	V
Continuous Forward Current @ T_{C} = 80°C (T_{J} = 150°C)	١ _F	44	А
Repetitive Peak Forward Current ($T_C = 80^{\circ}C$, t_p limited by T_{Jmax})	I _{FRM}	132	А
Power Dissipation Per Diode @ $T_C = 80^{\circ}C (T_J = 150^{\circ}C)$	P _{tot}	63	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
THERMAL PROPERTIES			
Storage Temperature range	T _{stg}	-40 to 125	°C
INSULATION PROPERTIES			
solation test voltage, t = 1 sec, 60 Hz	V _{is}	3000	V _{RMS}
Creepage distance		12.7	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to <u>ELECTRICAL CHARACTERISTICS</u>, <u>RECOMMENDED OPERATING RANGES</u> and/or APPLICATION INFORMATION for Safe Operating parameters.

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Min	Max	Unit
Module Operating Junction Temperature	TJ	-40	(T _{JMAX} – 25)	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Characteristic	Test Conditions	Symbol	Min	Тур	Max	Unit
BOOST MOSFET CHARACTERIST	ICS					
Zero Gate Voltage Drain Current	$V_{GS} = 0 \text{ V}, \text{ V}_{DS} = 1200 \text{ V}, \text{ T}_{J} = 25^{\circ}\text{C}$	I _{DSS}	—	-	100	μΑ
Static Drain-to-Source On	V_{GS} = 20 V, I_{D} = 20 A, T_{J} = 25°C	R _{DS(on)}	_	80	110	mΩ
Resistance	V _{GS} = 20 V, I _D = 20 A, T _J = 150°C		_	114	162	
Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 5 \text{ mA}$	V _{GS(th)}	1.8	2.0	4.3	V
Gate-Source Leakage Current	V _{GS} = 25 V, V _{DS} = 0 V	I _{GSS}	_	-	1	μΑ
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	_	13.4	_	ns
Rise Time	V _{DS} = 700 V, V _{GS} = 20 V, –5 V I _D = 30 A, R _G = 4.7 Ω	t _r	-	3.6	_	
Turn-off Delay Time		t _{d(off)}	-	27.6	-	
Fall Time		t _f	—	10.3	-	
Turn-on Switching Loss per Pulse		E _{on}	_	166	_	μJ
Turn-off Switching Loss per Pulse		E _{off}	_	49.2	_	
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	—	13.7	_	ns
Rise Time	V _{DS} = 700 V, V _{GS} = 20 V, –5 V I _D = 30 A, R _G = 4.7 Ω	t _r	-	3.5	_	
Turn-off Delay Time		t _{d(off)}	-	29.56	-	
Fall Time		t _f	—	10.36	-	
Turn-on Switching Loss per Pulse		Eon	—	154	-	μJ
Turn-off Switching Loss per Pulse		E _{off}	—	46.65	-	
Input Capacitance	V_{DS} = 800 V, V_{GS} = 0 V, f = 1 MHz	C _{iss}	—	1038.7	-	pF
Output Capacitance		C _{oss}	_	95.5	_	
Reverse Transfer Capacitance		C _{rss}	—	10.9	_	
Total Gate Charge	V_{DS} = 600 V, I _D = 20 A, V_{GS} = 20 V, -5 V	Qg	—	74.72	_	nC
Thermal Resistance - chip-to-case	Thermal grease, Thickness = 2.1 Mil ±2%	R _{thJC}	—	1.37	-	K/W
Thermal Resistance – chip-to- heatsink	$\lambda = 2.9 \text{ W/mK}$	R _{thJH}	-	1.94	-	K/W
BOOST DIODE CHARACTERISTIC	S					
Diode Reverse Leakage Current	V _R = 1200 V	I _R	_	-	300	μΑ
Diode Forward Voltage	I _F = 20 A, T _J = 25°C	V _F	-	1.49	1.7	V
	I _F = 20 A, T _J = 150°C		_	2.17	-	
Reverse Recovery Time	$T_J = 25^{\circ}C$	t _{rr}	_	12	-	ns
Reverse Recovery Charge	V_{DS} = 700 V, V_{GS} = 20 V, -5 V I _D = 30 A, R _G = 4.7 Ω	Q _{rr}	-	159	_	nC
Peak Reverse Recovery Current	b , u	I _{RRM}	—	21.2	-	А
Peak Rate of Fall of Recovery Current		di/dt	_	7240	-	A/μs
Reverse Recovery Energy		E _{rr}	—	70	-	μJ
Reverse Recovery Time	$T_J = 125^{\circ}C$	t _{rr}	-	11.7	-	ns
Reverse Recovery Charge	V _{DS} = 700 V, V _{GS} = 20 V, –5 V I _D = 30 A, R _G = 4.7 Ω	Q _{rr}	_	153	_	nC
Peak Reverse Recovery Current		I _{RRM}	—	23.8	-	А
Peak Rate of Fall of Recovery Current]	di/dt	_	8068	-	A/μs
Reverse Recovery Energy	7	E _{rr}	_	66.3	_	μJ

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified) (continued)

Characteristic	Test Conditions	Symbol	Min	Тур	Max	Unit
BOOST DIODE CHARACTERISTIC	S					
Thermal Resistance - chip-to-case	Thermal grease, Thickness = 2.1 Mil ±2%	R _{thJC}	_	0.98	_	K/W
Thermal Resistance – chip-to-heatsink	$\lambda = 2.9 \text{ W/mK}$	R _{thJH}	_	1.33	_	K/W
BYPASS DIODE CHARACTERISTI	cs					
Diode Reverse Leakage Current	V _R = 1600 V, T _J = 25°C	I _R	_	_	100	μA
Diode Forward Voltage	I _F = 30 A, T _J = 25°C	V _F	-	1.04	1.4	V
	I _F = 30 A, T _J = 150°C		-	0.94	-	
Thermal Resistance - chip-to-case	Thermal grease, Thickness = 2.1 Mil ±2% λ = 2.9 W/mK	R _{thJC}	_	1.12	_	K/W
Thermal Resistance – chip-to-heatsink		R _{thJH}	-	1.56	-	K/W
THERMISTOR CHARACTERISTICS	6					
Nominal resistance		R ₂₅	-	22	-	kΩ
Nominal resistance	T = 100°C	R ₁₀₀	_	1486	_	Ω
Deviation of R25		ΔR/R	-5	-	5	%
Power dissipation		PD	-	200	-	mW
Power dissipation constant			-	2	-	mW/K
B-value	B(25/50), tolerance $\pm 3\%$		-	3950	-	К
B-value	B(25/100), tolerance ±3%		_	3998	_	K

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Part Number	Marking	Package	Shipping
NXH80B120MNQ0SNG	NXH80B120MNQ0SNG	Q0BOOST – Case 180AJ (Pb-Free and Halide-Free Solder Pins)	24 Units / Blister Tray

TYPICAL CHARACTERISTICS – MOSFET, BOOST DIODE AND BYPASS DIODE

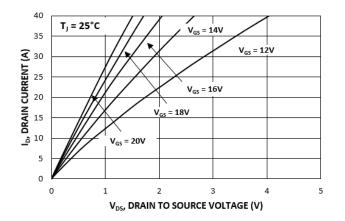


Figure 2. MOSFET On Region Characteristics

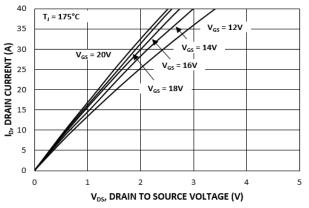


Figure 3. MOSFET On Region Characteristics

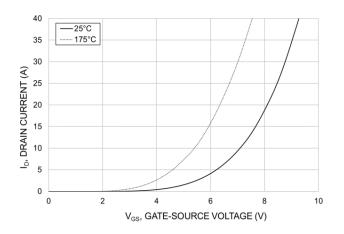


Figure 4. MOSFET Transfer Characteristics

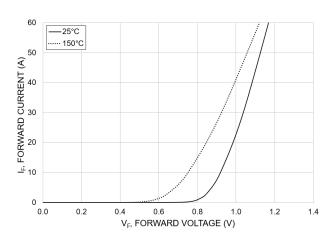


Figure 6. Bypass Diode Forward Characteristics

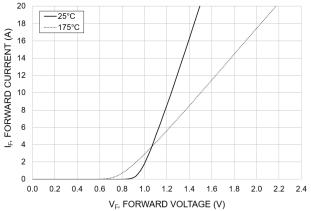
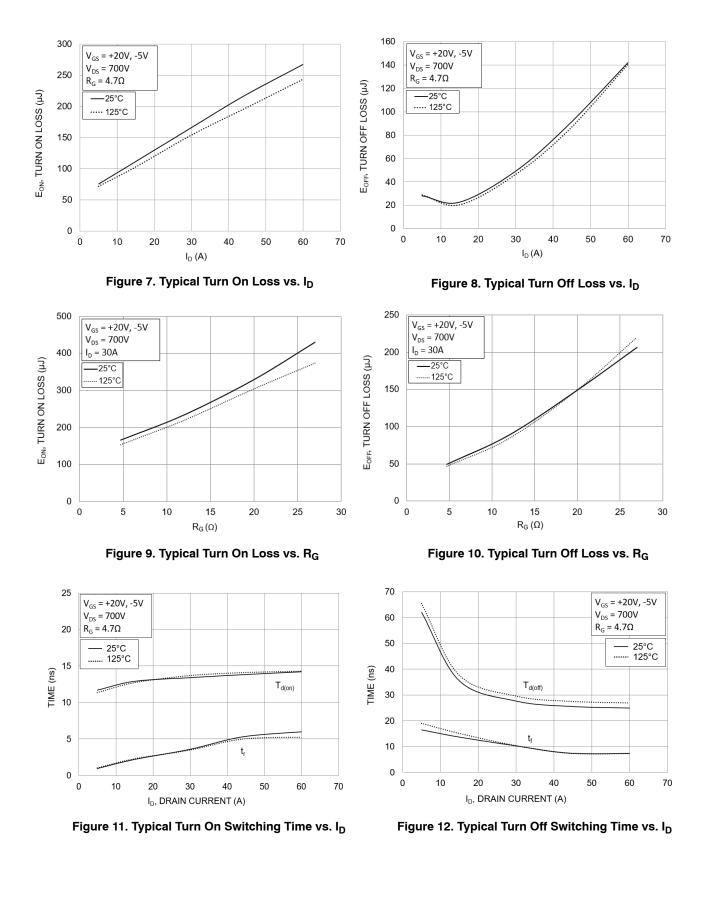
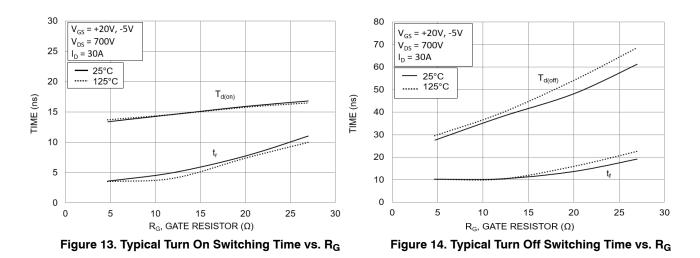




Figure 5. Boost Diode Forward Characteristics

TYPICAL SWITCHING CHARACTERISTICS – MOSFET

TYPICAL CHARACTERISTICS – MOSFET

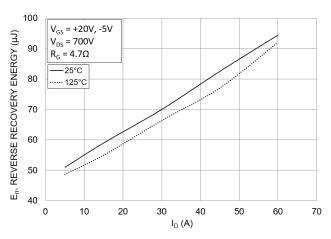


Figure 15. Typical Reverse Recovery Energy Loss vs. I_D

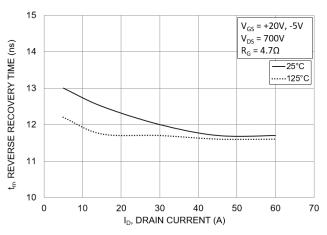


Figure 17. Typical Reverse Recovery Time vs. ID

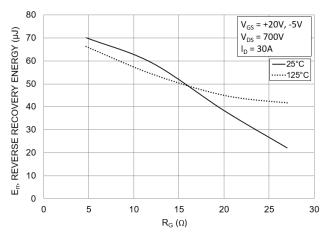
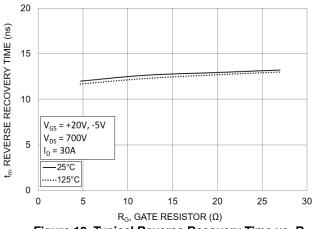
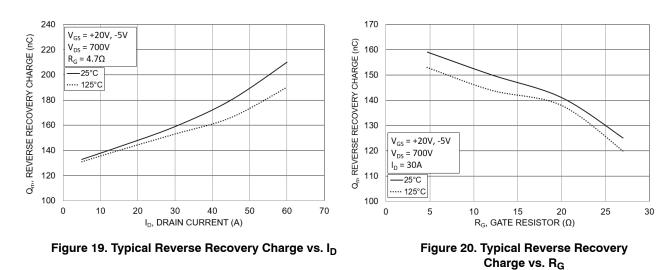




Figure 16. Typical Reverse Recovery Energy Loss vs. R_G

TYPICAL SWITCHING CHARACTERISTICS – BOOST DIODE

30 V_{GS} = +20V, -5V Im, REVERSE RECOVERY CURRENT (A) V_{DS} = 700V 28 $R_G = 4.7\Omega$ -25°C 26 ····· 125°C 24 22 20 18 16 0 10 20 30 40 50 60 70 I_D, DRAIN CURRENT (A)

Figure 21. Typical Reverse Recovery Peak Current vs. I_D

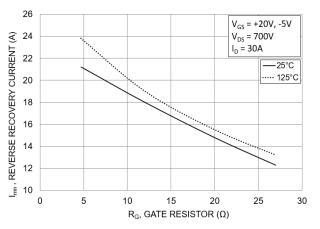
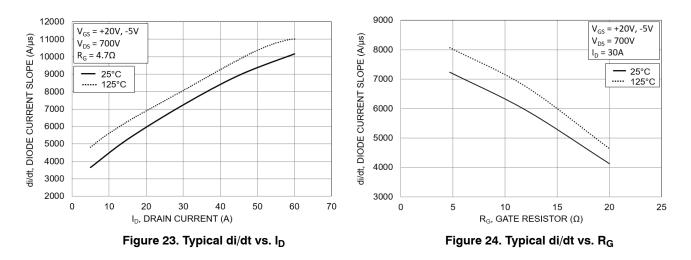



Figure 22. Typical Reverse Recovery Peak Current vs. R_G

TRANSIENT THERMAL IMPEDANCE – MOSFET, BOOST DIODE AND BYPASS DIODE

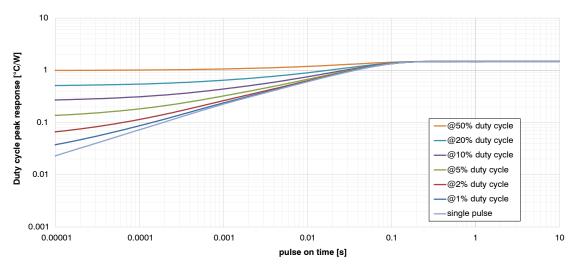
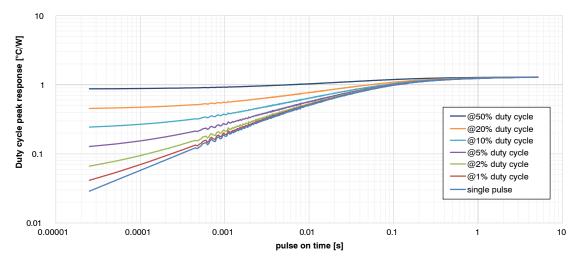



Figure 25. MOSFET Transient Thermal Impedance

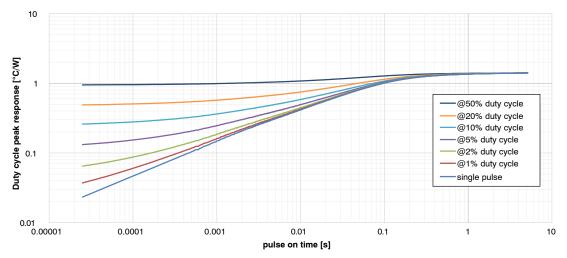


Figure 27. Bypass Diode Transient Thermal Impedance

GATE CHARGE, CAPACITANCE CHARGE, SOA AND THERMISTOR CHARACTERISTICS

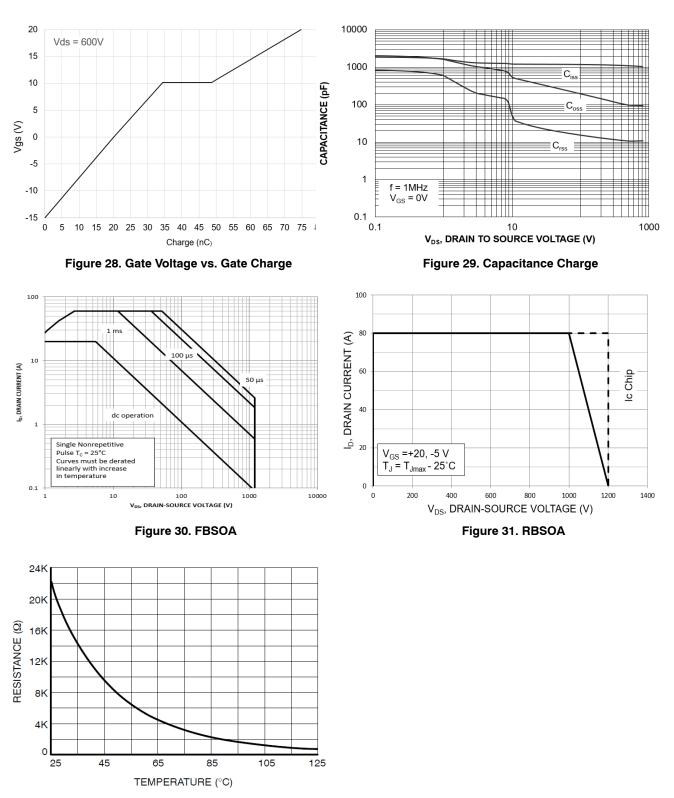
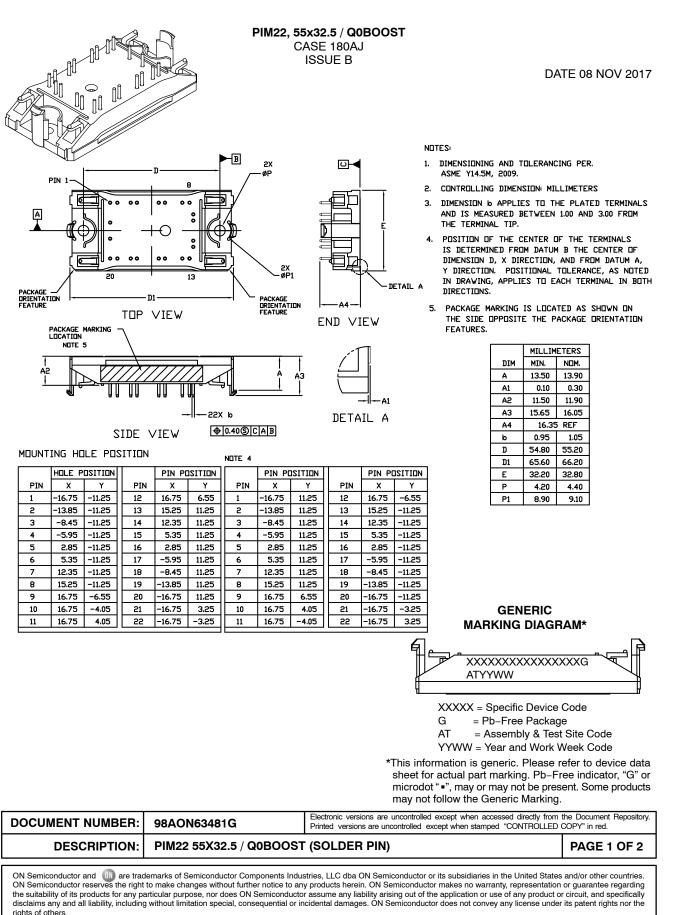
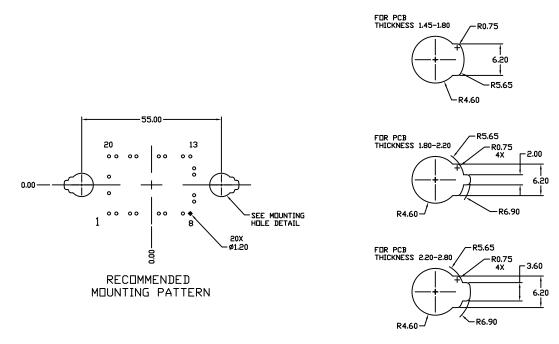



Figure 32. Thermistor Characteristics


MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

PIM22, 55x32.5 / Q0BOOST CASE 180AJ ISSUE B

DATE 08 NOV 2017

MOUNTING HOLE DETAIL

DOCUMENT NUMBER:	98AON63481G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION: PIM22 55X32.5 / Q0BOOST (SOLDER PIN) PAGE 2 OF					
ON Semiconductor and unarrest of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.					