OP505, OP505W, OP506, OP506W OP535

Obsolete (OP505D, OP506C, OP705A)

Features:

- T-1 package style
- Variety of sensitivity ranges
- Choice of narrow or wide receiving angle
- Small package size ideal for space-limited applications
- 0.050" [1.27 mm] or 0.100" [2.54 mm] Lead spacing

Description:

Each OP505 and OP506 devices consist of an NPN silicon phototransistor, the OP535 device consist of an NPN silicon photodarlington transistor. All of the devices are molded in a blue-tinted T-1 (3 mm) epoxy package.

The OP505 and OP535 devices have a narrow receiving angle that provides excellent on-axis coupling while the OP506 device has a wider receiving angle for those applications where a narrow receiving angle of the OP505 and OP535 is not required. The OP505W and OP506W device have the widest receiving angle and provides relatively even reception over a large area.

Devices are 100% production tested, using infrared light for close correlation with Optek's GaAs and GaAIAs emitters.

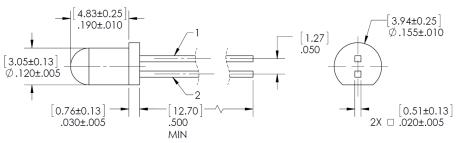
Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

Please see your OPTEK representative for custom versions of these devices.

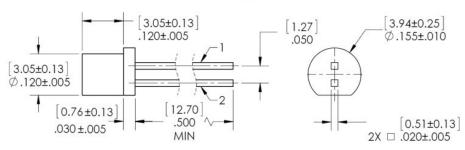
Applications:

- Space-limited applications
- Interruptive applications to detect media which is semitransparent to infrared light

Ordering Information						
Part Number	Sensor	Viewing Angle	Lead Spacing	Lead Length		
OP505A						
OP505B				0.50" [12.7 mm]		
OP505C		20°	0.050"			
OP505D (Obsolete)			[1.27 mm]			
OP505W	Transistor	90°				
OP506A						
OP506B		20°	0.100"			
OP506C (Obsolete)		20	[2.54 mm]			
OP506W		90°				
OP535A	Darlington					
OP535B	Danington	20°	0.050"			
OP705A (Obsolete)	R _{BE} Transistor	20	[1.27 mm]			

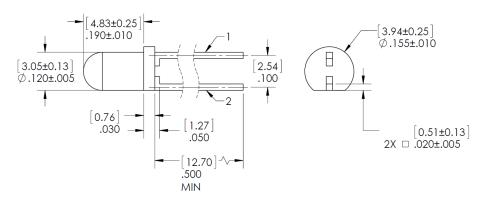


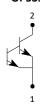
OP505, OP505W, OP506, OP506W OP535

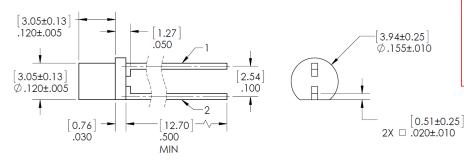

Obsolete (OP505D, OP506C, OP705A)

OP505, OP535

Pin #	Transistor				
1	Emitter				
2	Collector				


OP505W


OP505, OP506 OP505W, OP506W


OP506

OP535

OP506W

CONTAINS POLYSULFONE

Methanol and isopropanol alcohols are recommended cleaning agents.
Housings are soluble in chlorinated hydrocarbons and keytones.
Highly activated or water soluble fluxes may damage body.
Testing reagents before use is recommended prior to use.

TOLERANCES ARE ± .010" [.25] UNLESS OTHERWISE STATED DIMENSIONS ARE IN INCHES [MILLIMETERS]

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

TT Electronics | OPTEK Technology 2900 E. Plano Pkwy, Plano, TX 75074 | Ph: +1 972 323 2200 www.ttelectronics.com | sensors@ttelectronics.com

OP505, OP505W, OP506, OP506W OP535

Obsolete (OP505D, OP506C, OP705A)

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage & Operating Temperature Range	-40° C to +100° C
Collector-Emitter Voltage (OP505, OP506, OP505W, OP506W)	30 V
Collector-Emitter Voltage (OP535)	15 V
Emitter-Collector Voltage (OP505 and OP506 series only)	5.0 V
Lead Soldering Temperature (1/16 inch (1.6 mm) from case for 5 seconds with soldering iron)	260° C
Power Dissipation	100 mW ⁽²⁾

Electrical Characteristics (T_A = 25° C unless otherwise noted) **OP505**, **OP506**, **OP505W**, **OP506W**

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
I _{C(ON)}	On-State Collector Current OP505A, OP506A OP505B, OP506B OP505C	4.30 2.15 1.10	1 1 1	- 5.95 3.00	mA	$V_{CE} = 5 \text{ V, } E_E = 0.50 \text{ mW/cm}^2, \text{ Note 3}$
	OP505W, OP506W	0.10	ı	-	mA	$V_{CE} = 5 \text{ V}, E_E = 0.75 \text{ mW/cm}^2, \text{ Note 3}$
V _{CE(SAT)}	Collector-Emitter Saturation Voltage OP505, OP506	-	-	0.40	٧	$I_C = 250 \mu A$, $E_E = 0.5 \text{ mW/cm}^2$, Note 3
	OP505W, OP506W	-	-	0.40	V	$I_C = 50 \mu A$, $E_E = 0.75 \text{ mW/cm}^2$, Note 3
I _{CEO}	Collector-Dark Current	-	-	100	nA	$V_{CE} = 10 \text{ V}, E_{E} = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30	-	-	V	I _C = 100 μA, E _E = 0
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage OP505, OP506	5	ī		V	Ι _Ε = 100 μΑ, Ε _Ε = 0
ΔΙ _C /ΔΤ	Relative I _C Changes with Temperature	-	1.00	-	%/°C	$V_{CE} = 5 \text{ V, } E_{E} = 1.0 \text{ mW/cm}^{2}$

Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum of 20 grams force may be applied to the leads when soldering.
- (2) Derate linearly 1.33 mW/° C above 25° C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935 nm and a radiometric intensity level, which varies less than 10 % over the entire lens surface of the phototransistor being tested.
- (4) The knee point irradiance is defined as the irradiance required to increase $I_{C(ON)}$ to 50 μA .

Rev C 05/2022 Page 3

OP505, OP505W, OP506, OP506W OP535

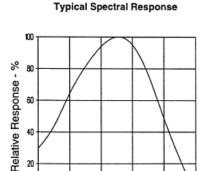
Obsolete (OP505D, OP506C, OP705A)

Electrical Specifications

Electrical Characteristics (T_A = 25° C unless otherwise noted) **OP535**

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
	On-State Collector Current					
I _{C(ON)}	OP535A	10.5	-	-	A	$V_{CF} = 5 \text{ V, } E_F = 0.13 \text{ mW/cm}^2, \text{ Note 3}$
	OP535B	3.5	-	32.0	mA	$V_{CE} = 5 \text{ V}, E_E = 0.13 \text{ mW/cm}, \text{Note 3}$
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	-	-	1.10	V	$I_C = 400 \mu A$, $E_E = 0.13 \text{ mW/cm}^2$, Note 3
I _{CEO}	I _{CEO} Collector-Dark Current		-	100	nA	$V_{CE} = 10 \text{ V}, E_{E} = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15.0	-	-	V	I _C = 1.0 mA, E _E = 0
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0	-	-	V	$I_E = 100 \mu A, E_E = 0$

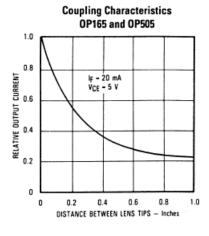
Rev C 05/2022 Page 4


OP505, OP505W, OP506, OP506W **OP535**

Obsolete (OP505D, OP506C, OP705A)

Performance

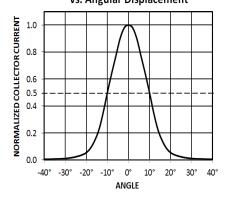
OP505A, OP505B, OP505C

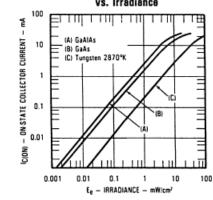

800

900

Wavelength - nm

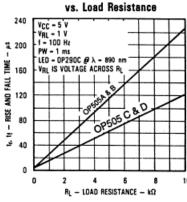
1000

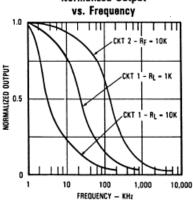

1100

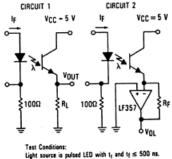


600

700


On-State Collector Current vs. Irradiance


Normalized Collector Current vs. Collector to Emitter Voltage


Rise and Fall Time

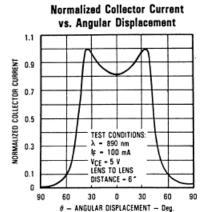
Normalized Output

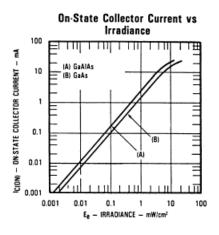
Switching Time **Test Circuit**

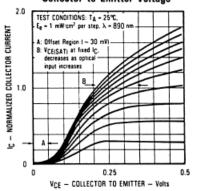
ight source is pulsed LED with t_f and $t_f \le 500$ ns. is adjusted for $V_{QUT} = 1$ Volt.

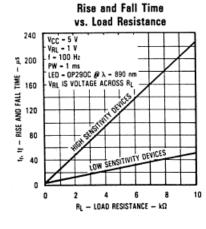
OP505, OP505W, OP506, OP506W OP535

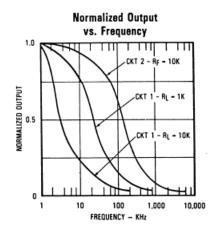
Performance


OP505W


Typical Spectral Response


Coupling Characteristics of OP165W and OP505W



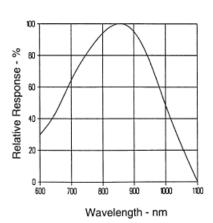


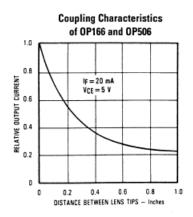

Normalized Collector Current vs. Collector to Emitter Voltage

Switching Time Test Circuit

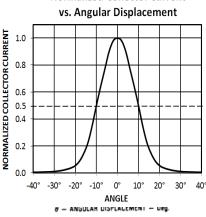
Light source is pulsed LED with t_f and $t_f \le 500$ (t_f is adjusted for VOUT = 1 Volt.

OP505, OP505W, OP506, OP506W **OP535**

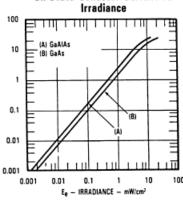


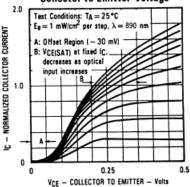


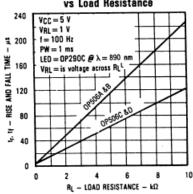
Performance

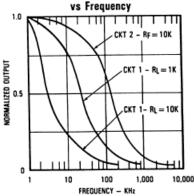

OP506A, OP506B

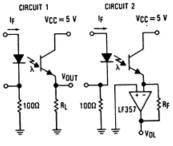
Typical Spectral Response




Normalized Collector Current



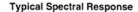

Normalized Collector Current vs Collector-to-Emitter Voltage

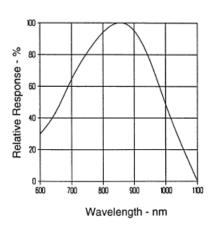

Rise and Fall Time vs Load Resistance

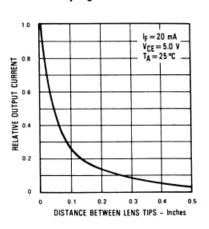
Normalized Output vs Frequency

Switching Time Test Circuit

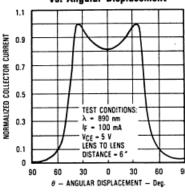
Light source is pulsed LED with t_f and $t_f \le 500$ ns. IF is adjusted for $V_{OUT} = 1$ Volt.

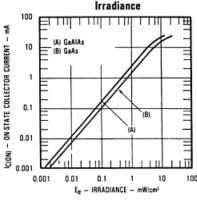

OP505, OP505W, OP506, OP506W **OP535**

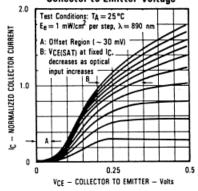


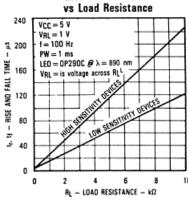

Performance

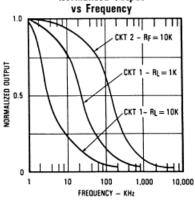
OP506W

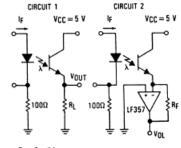



Coupling Characteristics


Normalized Collector Current vs. Angular Displacement


On-State Collector Current vs


Normalized Collector Current vs Collector-to-Emitter Voltage


Rise and Fall Time

Normalized Output vs Frequency

Switching Time Test Circuit

Test Conditions: Light source is pulsed LED with t_f and $t_f \le 500$ ns. IF is adjusted for VOUT = 1 Volt.