OP950 Series

Electronics

Features:

- Epoxy package
- Linear response vs. irradiance
- Fast switching time
- Choice of wide or extra wide receiving angle
- Side-looker package
- Small package style ideal for space-limited applications

Description:

Each **OP950**, **OP954** and **OP955** device consists of a PIN silicon photodiode molded in an epoxy package that allows spectral response from visible to infrared light wavelengths. The side-looking package is designed for easy PCBoard mounting and space-limited applications.

The **OP950** has a 95° wide receiving angle that provides relatively even reception over a large area and is mechanically and spectrally matched to OPTEK's GaAs and GaAiAs series of infrared emitting diodes.

The OP954 has a 128° very wide receiving angle that provides relatively even reception over a large area.

The **OP955** has a 95° wide receiving angle with a recessed lens, which allows an acceptance half-angle of 45° when measured from the optical axis to the half power point.

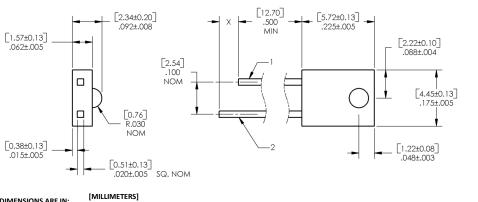
Both **OP954** and **OP955** components are 100% production tested, using infrared light for close correlation with OPTEK's GaAs and GaAlAs emitters.

Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

Applications:

- Non-contact reflective object sensor
- Assembly line automation
- Machine automation
- Machine safety
- End of travel sensor
- Door sensor

Ordering Information					
Part Number	Sensor Viewing Angle Lead Ler				
OP950		95°			
OP954	Photodiode	128°	.50"		
OP955	,	95°			

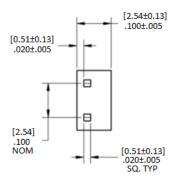


Rev C 04/2023 Page 1

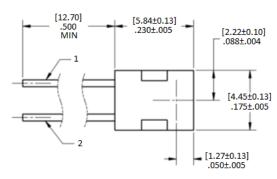
OP950 Series

OP950 Sidelooker Lens

DIMENSIONS ARE IN: INCHES


Pin#	Diode		
1	Anode		
2	Cathode		

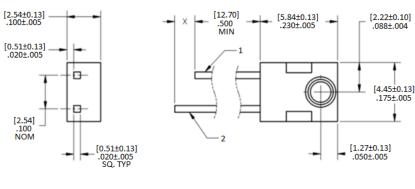
OP950 2


OP954

2

OP954 Sidelooker Lens

Pin#	Diode		
1	Anode		
2	Cathode		


OP954 - CONTAINS POLYSULFONE

To avoid stress cracking, we suggest using ND Industries' **Vibra-Tite** for thread-locking. **Vibra-Tite** evaporates fast without causing structural failure in OPTEK'S molded plastics.

OP950 Series

OP955 Sidelooker Recessed Lens

DIMENSIONS ARE IN: [MILLIMETERS] INCHES

Pin #	Diode		
1	Anode		
2	Cathode		

OP955 - CONTAINS POLYSULFONE

To avoid stress cracking, we suggest using ND Industries' **Vibra-Tite** for thread-locking. **Vibra-Tite** evaporates fast without causing structural failure in OPTEK'S molded plastics.

OP950 Series

Electrical Specifications

Absolute Maximum Ratings (T_A = 25 °C unless otherwise noted)

Reverse Breakdown Voltage	60 V
Storage & Operating Temperature Range	-40° C to +100 °C
Lead Soldering Temperature [1/16 inch (1.6 mm) from the case for 5 sec. with soldering iron]	260 °C ⁽¹⁾
Power Dissipation	100 mW ⁽²⁾

Electrical Characteristics (T_A = 25 °C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
ار	Reverse Light Current OP950, OP955	8	-	18	μΑ	$V_R = 5 \text{ V, } E_E = 1 \text{ mW/cm}^{2(3)}$
	OP954	3.5	-	8		
I _D	Reverse Dark Current	-	1	60	nA	$V_R = 30 \text{ V}, E_E = 0^{(4)}$
$V_{(BR)}$	Reverse Breakdown Voltage	60	-	-	٧	I _R = 100 μA
V_{F}	Forward Voltage	-	-	1.2	٧	I _F = 1 mA
C _T	Total Capacitance	-	4	1	pF	V _R = 20 V, E _E = 0, f = 1.0 MHz
t _r	Rise Time	-	5	-	ns	$V_R = 20 \text{ V}, \lambda = 850 \text{ nm}, R_L = 50 \Omega$
t _f	Fall Time	_	5	-	115	ν _R – 20 ν, λ – 650 nm, κ _L = 50 Ω

Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum of 20 grams force may be applied to leads when soldering.
- (2) Derate linearly 1.67 mW/°C above 25 °C.
- (3) The light source is an unfiltered GaAs LED with a peak emission wavelength of 935 nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the photodiode being tested.
- (4) Calculate the typical dark current in nA using the formula $I_D = 10^{(0.042T_A-1.5)}$ where T_A is ambient temperature in °C.