
Photologic® Slotted Optical Switch

OPB916 Series

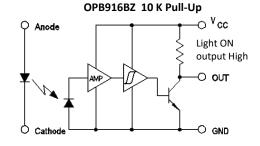
Features:

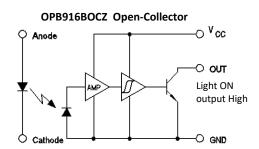
- Low power consumption
- Data rates to 250 kBaud
- Choice of two logic states and two electrical outputs
- 24" (610 mm) minimum 26 AWG UL listed wires
- Slot width 0.20" (5.08 mm)
- Slot Depth 0.635" (16.13 mm)

Description:

The **OPB916** series of Photologic® photo integrated circuit switches provide optimum flexibility. Each switch consists of an infrared Light Emitting Diode (LED) and a Photologic® photo integrated circuit, mounted in an opaque housing with clear windows for dust protection. The deep slot allows for a longer reach of the optical path from the 0.650" (16.5 mm) mounting plane. Internal apertures are 0.010" x .060" (.25 mm x 1.52 mm) for the Photologic's "S" side and 0.05" x 0.06" (1.27 mm x 1.52 mm) for the LED "E" side.

Devices in this series exhibit stable performance over supply voltages ranging from 4.5 V to 16.0 V, and may be specified as buffered with an internal 10 k Ω pull-up resistor or open collector output. Devices are TTL/LSTTL compatible and can drive up to 10 TTL loads.

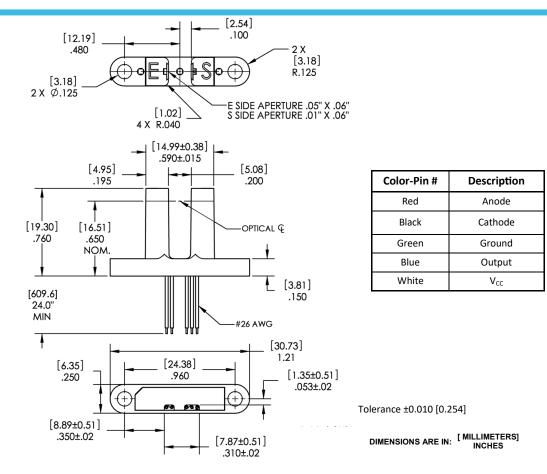

Custom electrical, wire or cabling are available. Contact your local representative or OPTEK for more information.


Applications:

- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- · Edge sensing

Ordering Information								
Part Number	LED Peak Wavelength	Sensor Photologic [®]	Slot Width / Depth	Aperture Emitter / Sensor	Lead Length / Wire			
OPB916BZ		10 K Pull-Up		0.05" / 0.01"	24" / 26 AWG Wire			
OPB916IZ Obsolete	880 nm	Inv-10 K Pull-Up	0.200" / 0.635"					
OPB916BOCZ		Open-Collector						

Color	Description		
Red	Anode		
Black	Cathode		
White	V _{cc}		
Blue	Output		
Green	Ground		



Photologic® Slotted Optical Switch

OPB916 Series

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage & Operating Temperature Range	-40° C to +80° C	
Input Infrared LED		
Diode Reverse DC Voltage	2 V	
Input Diode Power Dissipation ⁽²⁾	75 mW	
Forward DC Current	50 mA	
Output Photologic®		
Supply Voltage, V _{CC} (not to exceed 3 seconds)	18 V	
Voltage at Output Lead (Open Collector Output)	30 V	
Output Photologic® Power Dissipation ⁽³⁾	90 mW	

Notes

- (1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
- (2) Derate linearly 1.67 mW/° C above 25°.
- (3) Derate linearly 2.67 mW/° C above 25°.
- (4) Normal application would be with light source blocked, simulated by $I_F = 0$ mA.
- (5) All parameters tested using pulse technique.

General Note

Photologic[®] Slotted Optical Switch

OPB916 Series

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS			
Input Diode									
V _F	Forward Voltage		1.3	1.8	V	I _F = 20 mA			
I _R	Reverse Current	-	-	100	μΑ	V _R = 2 V, T _A = 25° C			
Output Photologic® Sensor									
V_{CC}	Operating DC Supply Voltage	4.5	-	16	V	-			
I _{CCL}	Low Level Supply Current: Buffered with 10 k pull-up ⁽¹⁾ Buffered Open-Collector Output ⁽¹⁾	-	-	7	mA	V_{CC} = 16 V, I_F = 0 mA, No Output Load			
І _{ссн}	High Level Supply Current: Buffered with 10 k pull-up Buffered Open-Collector Output	-	-	6	mA	V_{CC} = 16 V, I_F = 10 mA, No Output Load			
V _{OL}	Low Level Output Voltage: Buffered with 10 k pull-up Buffered Open-Collector Output	-	-	0.4	V	V _{CC} = 4.5 V, I _{OL} = 16 mA, I _F = 0 mA			
V_{OH}	High Level Output Voltage: Buffered with 10 k pull-up	V _{CC} - 2.0	-	-	V	V_{CC} = 4.5 V to 16 V, I_F = 10 mA, I_{OH} = 100 μ A			
I _{OH}	High Level Output Current: Buffered with 10 k pull-up Buffered Open-Collector Output	-	1.0	10	μΑ	$V_{CC} = 4.5 \text{ V}, I_F = 10 \text{ mA}, V_{OH} = 30 \text{ V}$			
I _{F(+)}	LED Positive-Going Threshold Current Buffered with 10 k pull-up	-	5	10	mA	V _{cc} = 5 V, No Output Load			
17(17)	Buffered Open-Collector Output	-	5	10	mA	V _{CC} = 4.5 V, I _{OL} = 16 mA			
I _{F(+)/} I _{F(-)}	Hysteresis	-	1.5	-	-	V _{CC} = 5 V			
t _{r,} t _f	Rise Time, Fall Time	-	50	-	ns	$V_{CC} = 5 \text{ V}, I_F = 0 \text{ or } 10 \text{ mA},$ $R_L = 300 \Omega \text{ to } 5 \text{ V}, C_L = 50 \text{ pF}$			
t _{PLH,} t _{PHL}	Propagation Delay	-	3	-	μs				

Notes:

- (1) Normal application would be with light source blocked, simulated by $I_F = 0$ mA.
- (2) All parameters tested using pulse technique.