

1

1

CONTENTS

CHAPTER 1 DE1-SOC DEVELOPMENT KIT .. 3

1.1 PACKAGE CONTENTS ... 3

1.2 DE1-SOC SYSTEM CD .. 4

1.3 GETTING HELP .. 4

CHAPTER 2 INTRODUCTION OF THE DE1-SOC BOARD ... 5

2.1 LAYOUT AND COMPONENTS .. 5

2.2 BLOCK DIAGRAM OF THE DE1-SOC BOARD ... 7

CHAPTER 3 USING THE DE1-SOC BOARD .. 10

3.1 BOARD SETUP ... 10

3.1.1 FPGA CONFIGURATION MODE SETTING .. 10

3.1.2 HPS BOOTSEL AND CLKSEL SETTING ... 11

3.2 CONFIGURING THE CYCLONE V SOC FPGA ... 13

3.3 BOARD STATUS ELEMENTS ... 18

3.4 BOARD RESET ELEMENTS ... 19

3.5 CLOCK CIRCUITRY .. 20

3.6 INTERFACE ON FPGA .. 21

3.6.1 USER PUSH-BUTTONS, SWITCHES AND LEDS ON FPGA .. 22

3.6.2 USING THE 7-SEGMENT DISPLAYS .. 25

3.6.3 USING THE 2X20 GPIO EXPANSION HEADERS ... 27

3.6.4 USING THE 24-BIT AUDIO CODEC ... 29

3.6.5 I2C MULTIPLEXER ... 30

3.6.6 VGA .. 31

3.6.7 TV DECODER ... 34

3.6.8 IR RECEIVER .. 36

3.6.9 IR EMITTER LED ... 36

3.6.10 SDRAM MEMORY ON FPGA ... 37

3.6.11 PS/2 SERIAL PORT .. 39

3.6.12 A/D CONVERTER AND 2X5 HEADER ... 41

3.7 INTERFACE ON HARD PROCESSOR SYSTEM (HPS) .. 42

3.7.1 USER PUSH-BUTTON AND LED ON HPS ... 42

3.7.2 GIGABIT ETHERNET ... 43

3.7.3 UART .. 44

3.7.4 DDR3 MEMORY ON HPS ... 45

3.7.5 QSPI FLASH ... 47

2

3.7.6 MICRO SD .. 48

3.7.7 2-PORT USB HOST ... 49

3.7.8 G-SENSOR .. 50

3.7.9 LTC CONNECTOR ... 51

CHAPTER 4 DE1-SOC SYSTEM BUILDER .. 53

4.1 INTRODUCTION ... 53

4.2 GENERAL DESIGN FLOW ... 53

4.3 USING DE1-SOC SYSTEM BUILDER .. 54

CHAPTER 5 EXAMPLES FOR FPGA .. 60

5.1 DE1-SOC FACTORY CONFIGURATION ... 60

5.2 AUDIO RECORDING AND PLAYING ... 61

5.3 A KARAOKE MACHINE .. 64

5.4 SDRAM TEST BY NIOS II ... 66

5.5 SDRAM RTL TEST ... 69

5.6 TV BOX DEMONSTRATION .. 71

5.7 PS/2 MOUSE DEMONSTRATION ... 74

5.8 IR EMITTER LED AND RECEIVER DEMONSTRATION ... 76

5.9 ADC READING .. 82

CHAPTER 6 EXAMPLES FOR HPS SOC .. 85

6.1 HELLO PROGRAM .. 85

6.2 USERS LED AND KEY .. 87

6.3 I2C INTERFACED G-SENSOR .. 93

6.4 I2C MUX TEST ... 96

CHAPTER 7 EXAMPLES FOR USING BOTH HPS SOC AND FGPA .. 99

7.1 HPS CONTROL LED AND HEX ... 99

CHAPTER 8 STEPS OF PROGRAMMING THE QUAD SERIAL CONFIGURATION DEVICE 103

8.1 BEFORE YOU BEGIN .. 103

8.2 CONVERT. SOF FILE TO .JIC FILE ... 103

8.3 WRITE JIC FILE INTO QUAD SERIAL CONFIGURATION DEVICE ... 108

8.4 ERASE THE QUAD SERIAL CONFIGURATION DEVICE ... 110

CHAPTER 9 APPENDIX ... 112

9.1 REVISION HISTORY ... 112

9.2 COPYRIGHT STATEMENT ... 112

3

Chapter 1

DE1-SoC

Development Kit

The DE1-SoC Development Kit presents a robust hardware design platform built around the Altera

System-on-Chip (SoC) FPGA, which combines the latest dual-core Cortex-A9 embedded cores

with industry-leading programmable logic for ultimate design flexibility. Users can now leverage

the power of tremendous re-configurability paired with a high-performance, low-power processor

system. Altera’s SoC integrates an ARM-based hard processor system (HPS) consisting of processor,

peripherals and memory interfaces tied seamlessly with the FPGA fabric using a high-bandwidth

interconnect backbone. The DE1-SoC development board includes hardware such as high-speed

DDR3 memory, video and audio capabilities, Ethernet networking, and much more.

The DE1-SoC Development Kit contains all components needed to use the board in conjunction

with a computer that runs the Microsoft Windows XP or later.

11..11 PPaacckkaaggee CCoonntteennttss

Figure 1-1 shows a photograph of the DE1-SoC package.

Figure 1-1 The DE1-SoC package contents

4

The DE1-SoC package includes:

 The DE1-SoC development board

 DE1-SoC Quick Start Guide

 USB Cable (Type A to B) for FPGA programming and control

 USB Cable (Type A to Mini-B) for UART control

 DE1-SoC System CD-ROM

 12V DC power adapter

11..22 DDEE11--SSooCC SSyysstteemm CCDD

The DE1-SoC System CD containing the DE1-SoC documentation and supporting materials,

including the User Manual, System Builder, reference designs and device datasheets. User can

download this System CD form the link : http://de1-soc.terasic.com.

11..33 GGeettttiinngg HHeellpp

Here are the addresses where you can get help if you encounter any problem:

 Altera Corporation

 101 Innovation Drive San Jose, California, 95134 USA

Email: university@altera.com

 Terasic Technologies

 9F., No.176, Sec.2, Gongdao 5th Rd, East Dist, Hsinchu City, 30070. Taiwan

Email: support@terasic.com

Tel.: +886-3-575-0880

Web: de1-soc.terasic.com

file:///C:/Users/User/AppData/Roaming/Microsoft/Word/參考/12.06.2013/參考/12.03.2013/參考/11.26.2013/參考/09.17.2013/參考/09.14.2013/參考/09.14.2013/參考/08.14.2013/university@altera.com
mailto:support@terasic.com
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=836

5

Chapter 2

Introduction of the

DE1-SoC Board

This chapter presents the features and design characteristics of the board.

22..11 LLaayyoouutt aanndd CCoommppoonneennttss

A photograph of the board is shown in Figure 2-1. It depicts the layout of the board and indicates

the location of the connectors and key components.

Figure 2-1 Development Board (top view)

6

Figure 2-2 Development Board (bottom view)

The DE1-SoC board has many features that allow users to implement a wide range of designed

circuits, from simple circuits to various multimedia projects.

The following hardware is provided on the board:

 FPGA

 Altera Cyclone® V SE 5CSEMA5F31C6N device

 Altera Serial Configuration device – EPCQ256

 USB Blaster II(on board) for programming; JTAG Mode

 64MB SDRAM (16-bit data bus)

 4 Push-buttons

 10 Slide switches

 10 Red user LEDs

 Six 7-segment displays

 Four 50MHz clock sources from clock generator

 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks

 VGA DAC (8-bit high-speed triple DACs) with VGA-out connector

 TV Decoder (NTSC/PAL/SECAM) and TV-in connector

 PS/2 mouse/keyboard connector

 IR receiver and IR emitter

 Two 40-pin Expansion Header with diode protection

 A/D Converter, 4-pin SPI interface with FPGA

7

 HPS (Hard Processor System)

 800MHz Dual-core ARM Cortex-A9 MPCore processor

 1GB DDR3 SDRAM (32-bit data bus)

 1 Gigabit Ethernet PHY with RJ45 connector

 2-port USB Host, Normal Type-A USB connector

 Micro SD card socket

 Accelerometer (I2C interface + interrupt)

 UART to USB, USB Mini-B connector

 Warm reset button and cold reset button

 One user button and one user LED

 LTC 2x7 expansion header

22..22 BBlloocckk DDiiaaggrraamm ooff tthhee DDEE11--SSooCC BBooaarrdd

Figure 2-3 gives the block diagram of the board. To provide maximum flexibility for the user, all

connections are made through the Cyclone V SoC FPGA device. Thus, the user can configure the

FPGA to implement any system design.

Figure 2-3 Board Block Diagram

8

Following is more detailed information about the blocks in Figure 2-3:

FFPPGGAA DDeevviiccee

 Cyclone V SoC 5CSEMA5F31 Device

 Dual-core ARM Cortex-A9 (HPS)

 85K Programmable Logic Elements

 4,450 Kbits embedded memory

 6 Fractional PLLs

 2 Hard Memory Controllers

CCoonnffiigguurraattiioonn aanndd DDeebbuugg

 Quad Serial Configuration device – EPCQ256 on FPGA

 On-Board USB Blaster II (Normal type B USB connector)

MMeemmoorryy DDeevviiccee

 64MB (32Mx16) SDRAM on FPGA

 1GB (2x256Mx16) DDR3 SDRAM on HPS

 128MB QSPI Flash on HPS

 Micro SD Card Socket on HPS

CCoommmmuunniiccaattiioonn

 Two Port USB 2.0 Host (ULPI interface with USB type A connector)

 UART to USB (USB Mini-B connector)

 10/100/1000 Ethernet

 PS/2 mouse/keyboard

 IR Emitter/Receiver

 I2C Multiplexer

CCoonnnneeccttoorrss

 Two 40-pin Expansion Headers

 One 10-pin ADC Input Header

 One LTC connector (One Serial Peripheral Interface (SPI) Master ,one I2C and one GPIO

interface)

9

DDiissppllaayy

 24-bit VGA DAC

AAuuddiioo

 24-bit CODEC, Line-in, line-out, and microphone-in jacks

VViiddeeoo IInnppuutt

 TV Decoder (NTSC/PAL/SECAM) and TV-in connector

SSwwiittcchheess,, BBuuttttoonnss aanndd IInnddiiccaattoorrss

 5 User Keys (FPGA x4, HPS x1)

 10 User switches (FPGA x10)

 11 User LEDs (FPGA x10, HPS x 1)

 2 HPS Reset Buttons (HPS_RESET_n and HPS_WARM_RST_n)

 Six 7-segment displays

SSeennssoorrss

 G-Sensor on HPS

PPoowweerr

 12V DC input

10

Chapter 3

Using the DE1-SoC

Board

This chapter gives instructions for using the board and describes each of its peripherals.

33..11 BBooaarrdd SSeettuupp

This section will explain the settings of FPGA configuration modes, HPS boot source select and

HPS flash controller clock frequency in detail.

33..11..11 FFPPGGAA CCoonnffiigguurraattiioonn MMooddee SSeettttiinngg

Table 3-1 gives the MSEL pins setting for each configuration scheme of Cyclone V SoC devices.

FPGA default works in ASx4 Fast mode with MSEL[4:0] = 10010.

Table 3-1 MSEL pin Settings for each Scheme of Cyclone V Device

Configuration

Scheme
Compression Feature

Design Security

Feature

POR Delay
Valid MSEL[4:0]

FPPx8

Disabled Disabled
Fast 10100

Standard 11000

Disabled Enabled
Fast 10101

Standard 11001

Enabled Disabled
Fast 10110

Standard 11010

FPPx16

Disabled Enabled
Fast 00000

Standard 00100

Disabled Disabled
Fast 00001

Standard 00101

Enabled Enabled
Fast 00010

Standard 00110

11

PS Enabled/ Disabled Disabled
Fast 10000

Standard 10001

AS(X1 and X4) Enabled/ Disabled Enabled
Fast 10010

Standard 10011

 Table 3-2 shows the switch controls and descriptions for MSEL.

Table 3-2 SW10 FPGA Configuration Mode Switch

Board Reference Signal Name Description Default

SW10.1 MSEL0

Sets the Cyclone V MSEL[4:0] pins.

Use these pins to set the configuration

scheme and POR delay.

On

SW10.2 MSEL1 Off

SW10.3 MSEL2 On

SW10.4 MSEL3 On

SW10.5 MSEL4 Off

SW10.6 N/A N/A N/A

33..11..22 HHPPSS BBOOOOTTSSEELL aanndd CCLLKKSSEELL SSeettttiinngg

The processor in the HPS can be boot from many sources such as the SD card, QSPI Flash or FPGA.

Selecting the boot source for the HPS can be set using the BOOTSEL signal. Figure 3-1 lists the

settings for selecting a suitable boot source. The default boot source for the HPS is from SD card

with fixing BOOTSEL[2:0] = 101. HPS flash controller clock frequency can be set using

CLOCKSEL signal. Table 3-3 lists the setting for SD/MMC controller CLOCKSEL pins. The

default CLOCKSEL setting is CLOCKSEL[1:0] = 00.

If users need to change BOOTSEL[2:0] and CLOCKSEL[1:0] setting, since we make our

schematic/layout flexible, users can change BOOTSEL[2:0] and CLOCKSEL[1:0] by :

 Change the BOOTSEL and CLOCKSEL resistors on the board

 By soldering or removing the resistors (R97~R100, R106~R111) will change the value of

BOOTSEL and CLOCKSEL.

 Add a x6 dip switch (SW16) on the board

 Solder SW16, R97, R98, R107 and remove R99, R100, R110, will let MSEL[4:0] value to be

changed by switching SW16. Table 3-4 shows the switch controls and descriptions for MSEL

Table 3-3 BOOTSEL[2:0] Setting Values and Flash Device Selection

BOOTSEL[2:0] Setting Value Flash Device

000 Reserved

001 FPGA (HPS-to-FPGA bridge)

12

010 1.8 V NAND Flash memory (*1)

011 3.0 V NAND Flash memory(*1)

100 1.8 V SD/MMC Flash memory(*1)

101 3.0 V SD/MMC Flash memory

110 1.8 V SPI or quad SPI Flash memory(*1)

111 3.0 V SPI or quad SPI Flash memory

(*1) : Not supported on DE1-SoC board

Table 3-4 SD/MMC Controller CSEL Pin Settings

Setting
CSEL Pin

0 1 2 3

Osc1_clk (EOSC1 pin) range 10-50MHz 10-12.5MHz 12.5-25MHz 25-50MHz

ID mode

sdmmc_cclk_out device

clock

Osc1_clk/128,

391 KHz max

Osc1_clk/32,

391 KHz max

Osc1_clk/64,

391 KHz max

Osc1_clk/128,

391 KHz max

Controller baud rate divisor 32 32 32 32

Data

transfer

mode

sdmmc_cclk_out device

clock

Osc1_clk/4, 391

12.5MHz max

Osc1_clk*1,

12.5MHz max

Osc1_clk/2,

12.5MHz max

Osc1_clk/4,

12.5MHz max

Controller baud rate divisor

(even numbers only)
1 (bypass) 1 (bypass 1 (bypass 1 (bypass

sdmmc_clk controller clock:
Osc1_clk,

50MHz max

Osc1_clk,

50MHz max

Osc1_clk,

50MHz max

Osc1_clk*2,

50MHz max

mpu_clk
Osc1_clk,

50MHz max

Osc1_clk*32,

400MHz max

Osc1_clk*16,

400MHz max

Osc1_clk*8,

400MHz max

PLL modes Bypassed Locked Locked Locked

Table 3-5 SW16 HPS BOOTSEL and CLKSEL Setting

Board Reference Signal Name Description Default

SW16.1 BOOTSEL0

Sets the Cyclone V BOOTSEL[2:0] and

CLOCKSEL[1:0] pins.

Off

SW16.2 BOOTSEL1 On

SW16.3 BOOTSEL2 Off

SW16.4 CLOCKSEL0 On

SW16.5 CLOCKSEL1 On

SW16.6 N/A N/A N/A

13

33..22 CCoonnffiigguurriinngg tthhee CCyycclloonnee VV SSooCC FFPPGGAA

The DE1-SoC board contains a serial configuration device that stores configuration data for the

Cyclone V SoC FPGA. This configuration data is automatically loaded from the configuration

device into the FPGA every time while power is applied to the board. Using the Quartus II software,

it is possible to reconfigure the FPGA at any time, and it is also possible to change the non-volatile

data that is stored in the serial configuration device. Both types of programming methods are

described below.

1. JTAG programming: In this method of programming, named after the IEEE standards Joint Test

Action Group, the configuration bit stream is downloaded directly into the Cyclone V SoC FPGA.

The FPGA will retain this configuration as long as power is applied to the board; the configuration

information will be lost when the power is turned off.

2. AS programming: In this method, called Active Serial programming, the configuration bit

stream is downloaded into the quad serial configuration device (EPCQ256). It provides non-volatile

storage of the bit stream, so that the information is retained even when the power supply to the

DE1-SoC board is turned off. When the board’s power is turned on, the configuration data in the

EPCQ256 device is automatically loaded into the Cyclone V SoC FPGA.

 JTAG Chain on DE1-SoC Board

To use JTAG interface for configuring FPGA device, the JTAG chain on DE1-SoC must form a

close loop that allows Quartus II programmer to detect FPGA device. Figure 3-1 illustrates the

JTAG chain on DE1-SoC board.

Figure 3-1 The JTAG chain on the board

14

 Configuring the FPGA in JTAG Mode

There are two devices (FPGA and HPS) on the JTAG Chain, the configure flow is different from

DE1. The following shows the programming flow with JTAG mode step by step.

 Open Programmer and click “Auto Detect “ as Figure 3-2

 Select detected device as Figure 3-3 (Please select device as same as which shows on the board)

Figure 3-2 FPGA JTAG Programming Steps 1

Figure 3-3 FPGA JTAG Programming Steps 2

15

 Both FPGA and HPS will be detected as Figure 3-4

 Click the FPGA device, right click mouse to popup the manual, and then select .sof file for

FPGA as Figure 3-5

Figure 3-4 FPGA JTAG Programming Steps 3

16

 Select .sof file for FPGA as Figure 3-6

Figure 3-5 FPGA JTAG Programming Steps 4

Figure 3-6 FPGA JTAG Programming Steps 5

17

 Click “Program/Configure” check box, and then click “Start” button to download .sof file into

FPGA as Figure 3-7

 Configuring the FPGA in AS Mode (from EPCQ256)

 The board contains a quad serial configuration device (EPCQ256) that stores configuration data

for the Cyclone V SoC FPGA. This configuration data is automatically loaded from the quad

serial configuration device chip into the FPGA when the board is powered up.

 To program the configuration device, users will need to use a Serial Flash Loader (SFL)

function to program the quad serial configuration device via the JTAG interface. The

Figure 3-7 FPGA JTAG Programming Steps 6

18

FPGA-based SFL is a soft intellectual property (IP) core within the FPGA that bridges the JTAG

and flash interfaces. The SFL mega-function is available from Quartus II software. Figure 3-8

shows the programming method when adopting a SFL solution

 Please refer to Chapter 9: Steps of Programming the Quad Serial Configuration Device for the

basic programming instruction on the serial configuration device

Figure 3-8 Programming a Quad Serial Configuration Device with the SFL Solution

33..33 BBooaarrdd SSttaattuuss EElleemmeennttss

The board includes status LEDs. Please refer to Table 3-6 for the status of the LED indicator.

Table 3-6 LED Indicators

Board Reference LED Name Description

D14 12-V Power Illuminates when 12-V power is active.

TXD UART TXD Illuminates when data from FT232R to USB Host.

RXD UART RXD
Illuminates when data from USB Host to FT232R.

D5 JTAG_RX

Reserved

D4 JTAG_TX

19

33..44 BBooaarrdd RReesseett EElleemmeennttss

The board equips two HPS reset circuits (See Figure 3-9). Table 3-7 shows the buttons references

and its descriptions. Figure 3-10 shows the reset tree on the board.

Figure 3-9 Board Reset Elements

Table 3-7 Reset Elements

Board Reference Signal Name Description

KEY5 HPS_RESET_N

Cold reset to the HPS , Ethernet PHY and USB host device .

Active low input that will reset all HPS logics that can be reset.

Places the HPS in a default state sufficient for software to

boot.

KEY7 HPS_WARM_RST_N
Warm reset to the HPS block. Active low input affects the

system reset domains which allows debugging to operate.

20

Figure 3-10 Reset Tree on the Development Board

33..55 CClloocckk CCiirrccuuiittrryy

Figure 3-11 is a diagram showing the default frequencies of all of the external clocks going to the

Cyclone V SoC FPGA. A clock generator is used to distribute clock signals with low jitter to FPGA.

The four distributing 50MHz clock signals are connected to the FPGA that are used for clocking the

user logic. One distributing 25MHz clock signal is connected to HPS clock inputs, the other

distributing 25MHz clock signal is connected to the clock input of Gigabit Ethernet Transceiver.

Two distributing 24MHz clock signals are connected to clock inputs of USB Host/OTG PHY and

USB Hub controller, respectively. The associated pin assignments for clock inputs to FPGA I/O pins

are listed in Table 3-8.

21

Figure 3-11 Block diagram of the clock distribution

Table 3-8 Pin Assignments for Clock Inputs

Signal Name FPGA Pin No. Description I/O Standard

CLOCK_50 PIN_AF14 50 MHz clock input 3.3V

CLOCK2_50 PIN_AA16 50 MHz clock input 3.3V

CLOCK3_50 PIN_Y26 50 MHz clock input 3.3V

CLOCK4_50 PIN_K14 50 MHz clock input 3.3V

HPS_CLOCK1_25 PIN_D25 25 MHz clock input 3.3V

HPS_CLOCK2_25 PIN_F25 25 MHz clock input 3.3V

33..66 IInntteerrffaaccee oonn FFPPGGAA

This section describes the interfaces to the FPGA. Users can control or monitor the different

interfaces with user logic on the FPGA.

22

3.6.1 User Push-buttons, Switches and LEDs on FPGA

The board provides four push-button switches connected to FPGA as shown in Figure 3-12

Connections between the push-button and Cyclone V SoC FPGA. Each of these switches is debounced

using a Schmitt Trigger circuit, as indicated in Figure 3-13. The four outputs called KEY0, KEY1,

KEY2, and KEY3 of the Schmitt Trigger devices are connected directly to the Cyclone V SoC

FPGA. Each push-button switch provides a high logic level when it is not pressed, and provides a

low logic level when depressed. Since the push-button switches are debounced, they are appropriate

for using as clock or reset inputs in a circuit.

Figure 3-12 Connections between the push-button and Cyclone V SoC FPGA

Pushbutton releasedPushbutton depressed

Before

Debouncing

Schmitt Trigger

Debounced

Figure 3-13 Switch debouncing

23

There are ten slide switches connected to FPGA on the board (See Figure 3-14). These switches are

not debounced, and are assumed for use as level-sensitive data inputs to a circuit. Each switch is

connected directly to a pin on the Cyclone V SoC FPGA. When the switch is in the DOWN position

(closest to the edge of the board), it provides a low logic level to the FPGA, and when the switch is

in the UP position it provides a high logic level.

Figure 3-14 Connections between the slide switches and Cyclone V SoC FPGA

There are also ten user-controllable LEDs connected to FPGA on the board. Each LED is driven

directly by a pin on the Cyclone V SoC FPGA; driving its associated pin to a high logic level turns

the LED on, and driving the pin low turns it off. Figure 3-15 shows the connections between LEDs

and Cyclone V SoC FPGA. Table 3-9, Table 3-10 and Table 3-11 list the pin assignments of these

user interfaces.

24

Figure 3-15 Connections between the LEDs and Cyclone V SoC FPGA

Table 3-9 Pin Assignments for Slide Switches

Signal Name FPGA Pin No. Description I/O Standard

SW[0] PIN_AB12 Slide Switch[0] 3.3V

SW[1] PIN_AC12 Slide Switch[1] 3.3V

SW[2] PIN_AF9 Slide Switch[2] 3.3V

SW[3] PIN_AF10 Slide Switch[3] 3.3V

SW[4] PIN_AD11 Slide Switch[4] 3.3V

SW[5] PIN_AD12 Slide Switch[5] 3.3V

SW[6] PIN_AE11 Slide Switch[6] 3.3V

SW[7] PIN_AC9 Slide Switch[7] 3.3V

SW[8] PIN_AD10 Slide Switch[8] 3.3V

SW[9] PIN_AE12 Slide Switch[9] 3.3V

Table 3-10 Pin Assignments for Push-buttons

Signal Name FPGA Pin No. Description I/O Standard

KEY[0] PIN_AA14 Push-button[0] 3.3V

KEY[1] PIN_AA15 Push-button[1] 3.3V

KEY[2] PIN_W15 Push-button[2] 3.3V

KEY[3] PIN_Y16 Push-button[3] 3.3V

25

Table 3-11 Pin Assignments for LEDs

Signal Name FPGA Pin No. Description I/O Standard

LEDR[0] PIN_V16 LED [0] 3.3V

LEDR[1] PIN_W16 LED [1] 3.3V

LEDR[2] PIN_V17 LED [2] 3.3V

LEDR[3] PIN_V18 LED [3] 3.3V

LEDR[4] PIN_W17 LED [4] 3.3V

LEDR[5] PIN_W19 LED [5] 3.3V

LEDR[6] PIN_Y19 LED [6] 3.3V

LEDR[7] PIN_W20 LED [7] 3.3V

LEDR[8] PIN_W21 LED [8] 3.3V

LEDR[9] PIN_Y21 LED [9] 3.3V

3.6.2 Using the 7-segment Displays

The DE1-SoC board has six 7-segment displays. These displays are arranged into three pairs,

behaving the intent of displaying numbers of various sizes. As indicated in the schematic in Figure

3-16, the seven segments (common anode) are connected to pins on Cyclone V SoC FPGA.

Applying a low logic level to a segment will light it up and applying a high logic level turns it off.

Each segment in a display is identified by an index from 0 to 6, with the positions given in Figure

3-16.Table 3-12 shows the assignments of FPGA pins to the 7-segment displays.

Figure 3-16 Connections between the 7-segment display HEX0 and Cyclone V SoC FPGA

Table 3-12 Pin Assignments for 7-segment Displays

Signal Name FPGA Pin No. Description I/O Standard

HEX0[0] PIN_AE26 Seven Segment Digit 0[0] 3.3V

26

HEX0[1] PIN_AE27 Seven Segment Digit 0[1] 3.3V

HEX0[2] PIN_AE28 Seven Segment Digit 0[2] 3.3V

HEX0[3] PIN_AG27 Seven Segment Digit 0[3] 3.3V

HEX0[4] PIN_AF28 Seven Segment Digit 0[4] 3.3V

HEX0[5] PIN_AG28 Seven Segment Digit 0[5] 3.3V

HEX0[6] PIN_AH28 Seven Segment Digit 0[6] 3.3V

HEX1[0] PIN_AJ29 Seven Segment Digit 1[0] 3.3V

HEX1[1] PIN_AH29 Seven Segment Digit 1[1] 3.3V

HEX1[2] PIN_AH30 Seven Segment Digit 1[2] 3.3V

HEX1[3] PIN_AG30 Seven Segment Digit 1[3] 3.3V

HEX1[4] PIN_AF29 Seven Segment Digit 1[4] 3.3V

HEX1[5] PIN_AF30 Seven Segment Digit 1[5] 3.3V

HEX1[6] PIN_AD27 Seven Segment Digit 1[6] 3.3V

HEX2[0] PIN_AB23 Seven Segment Digit 2[0] 3.3V

HEX2[1] PIN_AE29 Seven Segment Digit 2[1] 3.3V

HEX2[2] PIN_AD29 Seven Segment Digit 2[2] 3.3V

HEX2[3] PIN_AC28 Seven Segment Digit 2[3] 3.3V

HEX2[4] PIN_AD30 Seven Segment Digit 2[4] 3.3V

HEX2[5] PIN_AC29 Seven Segment Digit 2[5] 3.3V

HEX2[6] PIN_AC30 Seven Segment Digit 2[6] 3.3V

HEX3[0] PIN_AD26 Seven Segment Digit 3[0] 3.3V

HEX3[1] PIN_AC27 Seven Segment Digit 3[1] 3.3V

HEX3[2] PIN_AD25 Seven Segment Digit 3[2] 3.3V

HEX3[3] PIN_AC25 Seven Segment Digit 3[3] 3.3V

HEX3[4] PIN_AB28 Seven Segment Digit 3[4] 3.3V

HEX3[5] PIN_AB25 Seven Segment Digit 3[5] 3.3V

HEX3[6] PIN_AB22 Seven Segment Digit 3[6] 3.3V

HEX4[0] PIN_AA24 Seven Segment Digit 4[0] 3.3V

HEX4[1] PIN_Y23 Seven Segment Digit 4[1] 3.3V

HEX4[2] PIN_Y24 Seven Segment Digit 4[2] 3.3V

HEX4[3] PIN_W22 Seven Segment Digit 4[3] 3.3V

HEX4[4] PIN_W24 Seven Segment Digit 4[4] 3.3V

HEX4[5] PIN_V23 Seven Segment Digit 4[5] 3.3V

HEX4[6] PIN_W25 Seven Segment Digit 4[6] 3.3V

HEX5[0] PIN_V25 Seven Segment Digit 5[0] 3.3V

HEX5[1] PIN_AA28 Seven Segment Digit 5[1] 3.3V

HEX5[2] PIN_Y27 Seven Segment Digit 5[2] 3.3V

HEX5[3] PIN_AB27 Seven Segment Digit 5[3] 3.3V

HEX5[4] PIN_AB26 Seven Segment Digit 5[4] 3.3V

HEX5[5] PIN_AA26 Seven Segment Digit 5[5] 3.3V

HEX5[6] PIN_AA25 Seven Segment Digit 5[6] 3.3V

27

3.6.3 Using the 2x20 GPIO Expansion Headers

The Board provides two 40-pin expansion headers. The header connects directly to 36 pins of the

Cyclone V SoC FPGA, and also provides DC +5V (VCC5), DC +3.3V (VCC3P3), and two GND

pins. The maximum power consumption of the daughter card that connects to GPIO port is shown

in Table 3-13.

Table 3-13 Power Supply of the Expansion Header

Supplied Voltage Max. Current Limit

5V 1A

3.3V 1.5A

Each pin on the expansion headers is connected to two diodes and a resistor that provides protection

against high and low voltages. Figure 3-17 shows the protection circuitry for only one of the pin on

the header, but this circuitry is included for all 72 data pins. Table 3-14 shows all the pin

assignments of the GPIO connector.

Figure 3-17 Connections between the GPIO connector and Cyclone V SoC FPGA

Table 3-14 Pin Assignments for Expansion Headers

Signal Name FPGA Pin No. Description I/O Standard

GPIO_0[0] PIN_AC18 GPIO Connection 0[0] 3.3V

GPIO_0 [1] PIN_Y17 GPIO Connection 0[1] 3.3V

GPIO_0 [2] PIN_AD17 GPIO Connection 0[2] 3.3V

GPIO_0 [3] PIN_Y18 GPIO Connection 0[3] 3.3V

28

GPIO_0 [4] PIN_AK16 GPIO Connection 0[4] 3.3V

GPIO_0 [5] PIN_AK18 GPIO Connection 0[5] 3.3V

GPIO_0 [6] PIN_AK19 GPIO Connection 0[6] 3.3V

GPIO_0 [7] PIN_AJ19 GPIO Connection 0[7] 3.3V

GPIO_0 [8] PIN_AJ17 GPIO Connection 0[8] 3.3V

GPIO_0 [9] PIN_AJ16 GPIO Connection 0[9] 3.3V

GPIO_0 [10] PIN_AH18 GPIO Connection 0[10] 3.3V

GPIO_0 [11] PIN_AH17 GPIO Connection 0[11] 3.3V

GPIO_0 [12] PIN_AG16 GPIO Connection 0[12] 3.3V

GPIO_0 [13] PIN_AE16 GPIO Connection 0[13] 3.3V

GPIO_0 [14] PIN_AF16 GPIO Connection 0[14] 3.3V

GPIO_0 [15] PIN_AG17 GPIO Connection 0[15] 3.3V

GPIO_0 [16] PIN_AA18 GPIO Connection 0[16] 3.3V

GPIO_0 [17] PIN_AA19 GPIO Connection 0[17] 3.3V

GPIO_0 [18] PIN_AE17 GPIO Connection 0[18] 3.3V

GPIO_0 [19] PIN_AC20 GPIO Connection 0[19] 3.3V

GPIO_0 [20] PIN_AH19 GPIO Connection 0[20] 3.3V

GPIO_0 [21] PIN_AJ20 GPIO Connection 0[21] 3.3V

GPIO_0 [22] PIN_AH20 GPIO Connection 0[22] 3.3V

GPIO_0 [23] PIN_AK21 GPIO Connection 0[23] 3.3V

GPIO_0 [24] PIN_AD19 GPIO Connection 0[24] 3.3V

GPIO_0 [25] PIN_AD20 GPIO Connection 0[25] 3.3V

GPIO_0 [26] PIN_AE18 GPIO Connection 0[26] 3.3V

GPIO_0 [27] PIN_AE19 GPIO Connection 0[27] 3.3V

GPIO_0 [28] PIN_AF20 GPIO Connection 0[28] 3.3V

GPIO_0 [29] PIN_AF21 GPIO Connection 0[29] 3.3V

GPIO_0 [30] PIN_AF19 GPIO Connection 0[30] 3.3V

GPIO_0 [31] PIN_AG21 GPIO Connection 0[31] 3.3V

GPIO_0 [32] PIN_AF18 GPIO Connection 0[32] 3.3V

GPIO_0 [33] PIN_AG20 GPIO Connection 0[33] 3.3V

GPIO_0 [34] PIN_AG18 GPIO Connection 0[34] 3.3V

GPIO_0 [35] PIN_AJ21 GPIO Connection 0[35] 3.3V

GPIO_1[0] PIN_AB17 GPIO Connection 1[0] 3.3V

GPIO_1[1] PIN_AA21 GPIO Connection 1[1] 3.3V

GPIO_1 [2] PIN_AB21 GPIO Connection 1[2] 3.3V

GPIO_1 [3] PIN_AC23 GPIO Connection 1[3] 3.3V

GPIO_1 [4] PIN_AD24 GPIO Connection 1[4] 3.3V

GPIO_1 [5] PIN_AE23 GPIO Connection 1[5] 3.3V

GPIO_1 [6] PIN_AE24 GPIO Connection 1[6] 3.3V

GPIO_1 [7] PIN_AF25 GPIO Connection 1[7] 3.3V

GPIO_1 [8] PIN_AF26 GPIO Connection 1[8] 3.3V

GPIO_1 [9] PIN_AG25 GPIO Connection 1[9] 3.3V

GPIO_1[10] PIN_AG26 GPIO Connection 1[10] 3.3V

GPIO_1 [11] PIN_AH24 GPIO Connection 1[11] 3.3V

29

GPIO_1 [12] PIN_AH27 GPIO Connection 1[12] 3.3V

GPIO_1 [13] PIN_AJ27 GPIO Connection 1[13] 3.3V

GPIO_1 [14] PIN_AK29 GPIO Connection 1[14] 3.3V

GPIO_1 [15] PIN_AK28 GPIO Connection 1[15] 3.3V

GPIO_1 [16] PIN_AK27 GPIO Connection 1[16] 3.3V

GPIO_1 [17] PIN_AJ26 GPIO Connection 1[17] 3.3V

GPIO_1 [18] PIN_AK26 GPIO Connection 1[18] 3.3V

GPIO_1 [19] PIN_AH25 GPIO Connection 1[19] 3.3V

GPIO_1 [20] PIN_AJ25 GPIO Connection 1[20] 3.3V

GPIO_1 [21] PIN_AJ24 GPIO Connection 1[21] 3.3V

GPIO_1 [22] PIN_AK24 GPIO Connection 1[22] 3.3V

GPIO_1 [23] PIN_AG23 GPIO Connection 1[23] 3.3V

GPIO_1 [24] PIN_AK23 GPIO Connection 1[24] 3.3V

GPIO_1 [25] PIN_AH23 GPIO Connection 1[25] 3.3V

GPIO_1 [26] PIN_AK22 GPIO Connection 1[26] 3.3V

GPIO_1 [27] PIN_AJ22 GPIO Connection 1[27] 3.3V

GPIO_1 [28] PIN_AH22 GPIO Connection 1[28] 3.3V

GPIO_1 [29] PIN_AG22 GPIO Connection 1[29] 3.3V

GPIO_1 [30] PIN_AF24 GPIO Connection 1[30] 3.3V

GPIO_1 [31] PIN_AF23 GPIO Connection 1[31] 3.3V

GPIO_1 [32] PIN_AE22 GPIO Connection 1[32] 3.3V

GPIO_1 [33] PIN_AD21 GPIO Connection 1[33] 3.3V

GPIO_1 [34] PIN_AA20 GPIO Connection 1[34] 3.3V

GPIO_1 [35] PIN_AC22 GPIO Connection 1[35] 3.3V

3.6.4 Using the 24-bit Audio CODEC

The DE1-SoC board provides high-quality 24-bit audio via the Wolfson WM8731 audio CODEC

(Encoder/Decoder). This chip supports microphone-in, line-in, and line-out ports, with a sample rate

adjustable from 8 kHz to 96 kHz. The WM8731 is controlled via by a serial I2C bus, which is

connected to HPS or Cyclone V SoC FPGA through a I2C multiplexer. A schematic diagram of the

audio circuitry is shown in Figure 3-18, and the FPGA pin assignments are listed in Table 3-15.

Detailed information for using the WM8731 codec is available in its datasheet, which can be found

on the manufacturer’s website, or in the DE1_SOC_datasheets\Audio CODEC folder on the

DE1-SoC System CD.

30

Figure 3-18 Connections between FPGA and Audio CODEC

Table 3-15 Audio CODEC Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

AUD_ADCLRCK PIN_K8 Audio CODEC ADC LR Clock 3.3V

AUD_ADCDAT PIN_K7 Audio CODEC ADC Data 3.3V

AUD_DACLRCK PIN_H8 Audio CODEC DAC LR Clock 3.3V

AUD_DACDAT PIN_J7 Audio CODEC DAC Data 3.3V

AUD_XCK PIN_G7 Audio CODEC Chip Clock 3.3V

AUD_BCLK PIN_H7 Audio CODEC Bit-Stream Clock 3.3V

I2C_SCLK PIN_J12 or PIN_E23 I2C Clock 3.3V

I2C_SDAT PIN_K12 or PIN_C24 I2C Data 3.3V

3.6.5 I2C Multiplexer

The DE1-SoC board implements an I2C multiplexer so that HPS can access the I2C bus originally

owned by FPGA. Figure 3-19 shows the connection of I2C multiplexer. HPS will own I2C bus and

then can access Audio CODEC and TV Decoder when the HPS_I2C_CONTROL signal is set to

high. By default, FPGA owns the I2C bus. The FPGA pin assignments of I2C bus are listed in Table

3-16 .

31

Figure 3-19 Connections of I2C Multiplexer

Table 3-16 I2C Bus Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

FPGA_I2C_SCLK PIN_J12 FPGA I2C Clock 3.3V

FPGA_I2C_SDAT PIN_K12 FPGA I2C Data 3.3V

HPS_I2C1_SCLK PIN_E23 I2C Clock of the first HPS I2C concontroller 3.3V

HPS_I2C1_SDAT PIN_C24 I2C Data of the first HPS I2C concontroller 3.3V

HPS_I2C2_SCLK PIN_H23 I2C Clock of the second HPS I2C concontroller 3.3V

HPS_I2C2_SDAT PIN_A25 I2C Data of the second HPS I2C concontroller 3.3V

3.6.6 VGA

The DE1-SoC board includes a 15-pin D-SUB connector for VGA output. The VGA

synchronization signals are provided directly from the Cyclone V SoC FPGA, and the Analog

Devices ADV7123 triple 10-bit high-speed video DAC (only the higher 8-bits are used) is used to

produce the analog data signals (red, green, and blue). It could support the SXGA standard

(1280*1024) with a bandwidth of 100MHz. Figure 3-20 gives the associated schematic.

32

Figure 3-20 VGA Connections between FPGA and VGA

The timing specification for VGA synchronization and RGB (red, green, blue) data can be found on

various educational website (for example, search for “VGA signal timing”). Figure 3-20 illustrates

the basic timing requirements for each row (horizontal) that is displayed on a VGA monitor. An

active-low pulse of specific duration (time (a) in the figure) is applied to the horizontal

synchronization (hsync) input of the monitor, which signifies the end of one row of data and the

start of the next. The data (RGB) output to the monitor must be off (driven to 0 V) for a time period

called the back porch (b) after the hsync pulse occurs, which is followed by the display interval (c).

During the data display interval the RGB data drives each pixel in turn across the row being

displayed. Finally, there is a time period called the front porch (d) where the RGB signals must

again be off before the next hsync pulse can occur. The timing of the vertical synchronization

(vsync) is the similar as shown in Figure 3-21, except that a vsync pulse signifies the end of one

frame and the start of the next, and the data refers to the set of rows in the frame (horizontal timing).

Table 3-17 and Table 3-18 show different resolutions and durations of time periods a, b, c, and d

for both horizontal and vertical timing.

Detailed information for using the ADV7123 video DAC is available in its datasheet, which can be

found on the manufacturer’s website, or in the Datasheets\VIDEO DAC folder on the DE1-SoC

System CD. The pin assignments between the Cyclone V SoC FPGA and the ADV7123 are listed in

Table 3-19.

33

Figure 3-21 VGA horizontal timing specification

Table 3-17 VGA Horizontal Timing Specification

VGA mode Horizontal Timing Spec

Configuration Resolution(HxV) a(us) b(us) c(us) d(us) Pixel clock(MHz)

VGA(60Hz) 640x480 3.8 1.9 25.4 0.6 25

VGA(85Hz) 640x480 1.6 2.2 17.8 1.6 36

SVGA(60Hz) 800x600 3.2 2.2 20 1 40

SVGA(75Hz) 800x600 1.6 3.2 16.2 0.3 49

SVGA(85Hz) 800x600 1.1 2.7 14.2 0.6 56

XGA(60Hz) 1024x768 2.1 2.5 15.8 0.4 65

XGA(70Hz) 1024x768 1.8 1.9 13.7 0.3 75

XGA(85Hz) 1024x768 1.0 2.2 10.8 0.5 95

1280x1024(60Hz) 1280x1024 1.0 2.3 11.9 0.4 108

Table 3-18 VGA Vertical Timing Specification

VGA mode Vertical Timing Spec

Configuration Resolution(HxV) a(lines) b(lines) c(lines) d(lines) Pixel clock(MHz)

VGA(60Hz) 640x480 2 33 480 10 25

VGA(85Hz) 640x480 3 25 480 1 36

SVGA(60Hz) 800x600 4 23 600 1 40

SVGA(75Hz) 800x600 3 21 600 1 49

SVGA(85Hz) 800x600 3 27 600 1 56

XGA(60Hz) 1024x768 6 29 768 3 65

XGA(70Hz) 1024x768 6 29 768 3 75

XGA(85Hz) 1024x768 3 36 768 1 95

1280x1024(60Hz) 1280x1024 3 38 1024 1 108

34

Table 3-19 Pin Assignments for VGA

Signal Name FPGA Pin No. Description I/O Standard

VGA_R[0] PIN_A13 VGA Red[0] 3.3V

VGA_R[1] PIN_C13 VGA Red[1] 3.3V

VGA_R[2] PIN_E13 VGA Red[2] 3.3V

VGA_R[3] PIN_B12 VGA Red[3] 3.3V

VGA_R[4] PIN_C12 VGA Red[4] 3.3V

VGA_R[5] PIN_D12 VGA Red[5] 3.3V

VGA_R[6] PIN_E12 VGA Red[6] 3.3V

VGA_R[7] PIN_F13 VGA Red[7] 3.3V

VGA_G[0] PIN_J9 VGA Green[0] 3.3V

VGA_G[1] PIN_J10 VGA Green[1] 3.3V

VGA_G[2] PIN_H12 VGA Green[2] 3.3V

VGA_G[3] PIN_G10 VGA Green[3] 3.3V

VGA_G[4] PIN_G11 VGA Green[4] 3.3V

VGA_G[5] PIN_G12 VGA Green[5] 3.3V

VGA_G[6] PIN_F11 VGA Green[6] 3.3V

VGA_G[7] PIN_E11 VGA Green[7] 3.3V

VGA_B[0] PIN_B13 VGA Blue[0] 3.3V

VGA_B[1] PIN_G13 VGA Blue[1] 3.3V

VGA_B[2] PIN_H13 VGA Blue[2] 3.3V

VGA_B[3] PIN_F14 VGA Blue[3] 3.3V

VGA_B[4] PIN_H14 VGA Blue[4] 3.3V

VGA_B[5] PIN_F15 VGA Blue[5] 3.3V

VGA_B[6] PIN_G15 VGA Blue[6] 3.3V

VGA_B[7] PIN_J14 VGA Blue[7] 3.3V

VGA_CLK PIN_A11 VGA Clock 3.3V

VGA_BLANK_N PIN_F10 VGA BLANK 3.3V

VGA_HS PIN_B11 VGA H_SYNC 3.3V

VGA_VS PIN_D11 VGA V_SYNC 3.3V

VGA_SYNC_N PIN_C10 VGA SYNC 3.3V

3.6.7 TV Decoder

The DE1-SoC board is equipped with an Analog Device ADV7180 TV decoder chip. The

ADV7180 is an integrated video decoder that automatically detects and converts a standard analog

baseband television signals (NTSC, PAL, and SECAM) into 4:2:2 component video data

compatible with the 8-bit ITU-R BT.656 interface standard. The ADV7180 is compatible with a

broad range of video devices, including DVD players, tape-based sources, broadcast sources, and

security/surveillance cameras.

35

The registers in the TV decoder can be programmed by a serial I2C bus, which is connected to HPS

or Cyclone V SoC FPGA through a I2C multiplexer as indicated in Figure 3-22. Note that the I2C

address W/R of the TV decoder (U4) is 0x40/0x41. The pin assignments are listed in Table 3-20.

Detailed information of the ADV7180 is available on the manufacturer’s website, or in the

DE1_SOC_datasheets\Video Decoder folder on the DE2-115 System CD.

Figure 3-22 Connections between FPGA and TV Decoder

Table 3-20 TV Decoder Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

TD_DATA [0] PIN_D2 TV Decoder Data[0] 3.3V

TD_DATA [1] PIN_B1 TV Decoder Data[1] 3.3V

TD_DATA [2] PIN_E2 TV Decoder Data[2] 3.3V

TD_DATA [3] PIN_B2 TV Decoder Data[3] 3.3V

TD_DATA [4] PIN_D1 TV Decoder Data[4] 3.3V

TD_DATA [5] PIN_E1 TV Decoder Data[5] 3.3V

TD_DATA [6] PIN_C2 TV Decoder Data[6] 3.3V

TD_DATA [7] PIN_B3 TV Decoder Data[7] 3.3V

TD_HS PIN_A5 TV Decoder H_SYNC 3.3V

TD_VS PIN_A3 TV Decoder V_SYNC 3.3V

TD_CLK27 PIN_H15 TV Decoder Clock Input. 3.3V

TD_RESET_N PIN_F6 TV Decoder Reset 3.3V

I2C_SCLK PIN_J12 or PIN_E23 I2C Clock 3.3V

I2C_SDAT PIN_K12 or PIN_C24 I2C Data 3.3V

36

3.6.8 IR Receiver

The board provides an infrared remote-control receiver module (model: IRM-V538/TR1), whose

datasheet is offered in the Datasheets\ IR Receiver and Emitter folder on DE1-SoC System CD. The

accompanied remote controller with an encoding chip of uPD6121G is very suitable of generating

expected infrared signals. Figure 3-23 shows the related schematic of the IR receiver. Table 3-21

shows the IR receiver interface pin assignments.

Figure 3-23 Connection between FPGA and IR Receiver

Table 3-21 Pin Assignments for IR

Signal Name FPGA Pin No. Description I/O Standard

IRDA_RXD PIN_ AA30 IR Receiver 3.3V

3.6.9 IR Emitter LED

The board provides an IR Emitter LED for IR communication which is widely used for operating

the television device wirelessly from a short line-of-sight distance. Match this IR Emitter LED with

an IR receiver will allow the board to communicate with similarly equipped system. Figure 3-24

shows the related schematic of the IR emitter LED. Table 3-22 shows the IR emitter interface pin

assignments.

37

Figure 3-24 Connection between FPGA and IR Emitter LED

Table 3-22 Pin Assignments for IR

Signal Name FPGA Pin No. Description I/O Standard

IRDA_TXD PIN_ AB30 IR Emitter 3.3V

3.6.10 SDRAM Memory on FPGA

The board features 64MB of SDRAM, implemented using a 64MB (32Mx16) SDRAM device. The

device consists of 16-bit data line, control line and address line connected to the FPGA. This chip

use the 3.3V LVCMOS signaling standard. Connections between FPGA and SDRAM are shown in

Figure 3-25, while the pin assignments are listed in Table 3-23.

38

Figure 3-25 Connections between FPGA and SDRAM

Table 3-23 SDRAM Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

DRAM_ADDR[0] PIN_AK14 SDRAM Address[0] 3.3V

DRAM_ADDR[1] PIN_AH14 SDRAM Address[1] 3.3V

DRAM_ADDR[2] PIN_AG15 SDRAM Address[2] 3.3V

DRAM_ADDR[3] PIN_AE14 SDRAM Address[3] 3.3V

DRAM_ADDR[4] PIN_AB15 SDRAM Address[4] 3.3V

DRAM_ADDR[5] PIN_AC14 SDRAM Address[5] 3.3V

DRAM_ADDR[6] PIN_AD14 SDRAM Address[6] 3.3V

DRAM_ADDR[7] PIN_AF15 SDRAM Address[7] 3.3V

DRAM_ADDR[8] PIN_AH15 SDRAM Address[8] 3.3V

DRAM_ADDR[9] PIN_AG13 SDRAM Address[9] 3.3V

DRAM_ADDR[10] PIN_AG12 SDRAM Address[10] 3.3V

DRAM_ADDR[11] PIN_AH13 SDRAM Address[11] 3.3V

DRAM_ADDR[12] PIN_AJ14 SDRAM Address[12] 3.3V

DRAM_DQ[0] PIN_AK6 SDRAM Data[0] 3.3V

DRAM_DQ[1] PIN_AJ7 SDRAM Data[1] 3.3V

DRAM_DQ[2] PIN_AK7 SDRAM Data[2] 3.3V

DRAM_DQ[3] PIN_AK8 SDRAM Data[3] 3.3V

DRAM_DQ[4] PIN_AK9 SDRAM Data[4] 3.3V

DRAM_DQ[5] PIN_AG10 SDRAM Data[5] 3.3V

DRAM_DQ[6] PIN_AK11 SDRAM Data[6] 3.3V

39

DRAM_DQ[7] PIN_AJ11 SDRAM Data[7] 3.3V

DRAM_DQ[8] PIN_AH10 SDRAM Data[8] 3.3V

DRAM_DQ[9] PIN_AJ10 SDRAM Data[9] 3.3V

DRAM_DQ[10] PIN_AJ9 SDRAM Data[10] 3.3V

DRAM_DQ[11] PIN_AH9 SDRAM Data[11] 3.3V

DRAM_DQ[12] PIN_AH8 SDRAM Data[12] 3.3V

DRAM_DQ[13] PIN_AH7 SDRAM Data[13] 3.3V

DRAM_DQ[14] PIN_AJ6 SDRAM Data[14] 3.3V

DRAM_DQ[15] PIN_AJ5 SDRAM Data[15] 3.3V

DRAM_BA[0] PIN_AF13 SDRAM Bank Address[0] 3.3V

DRAM_BA[1] PIN_AJ12 SDRAM Bank Address[1] 3.3V

DRAM_LDQM PIN_AB13 SDRAM byte Data Mask[0] 3.3V

DRAM_UDQM PIN_AK12 SDRAM byte Data Mask[1] 3.3V

DRAM_RAS_N PIN_AE13 SDRAM Row Address Strobe 3.3V

DRAM_CAS_N PIN_AF11 SDRAM Column Address Strobe 3.3V

DRAM_CKE PIN_AK13 SDRAM Clock Enable 3.3V

DRAM_CLK PIN_AH12 SDRAM Clock 3.3V

DRAM_WE_N PIN_AA13 SDRAM Write Enable 3.3V

DRAM_CS_N PIN_AG11 SDRAM Chip Select 3.3V

3.6.11 PS/2 Serial Port

The DE1-SoC board includes a standard PS/2 interface and a connector for a PS/2 keyboard or

mouse. Figure 3-26 shows the schematic of the PS/2 circuit. In addition, users can use the PS/2

keyboard and mouse on the DE1-SoC board simultaneously by plugging an extension PS/2 Y-Cable

(See Figure 3-27). Instructions for using a PS/2 mouse or keyboard can be found by performing an

appropriate search on various educational websites. The pin assignments for the associated interface

are shown in Table 3-24.

Note: If users connect only one PS/2 equipment, the PS/2 interface between FPGA I/O should be

“PS2_CLK” and “PS2_DAT”.

40

Figure 3-26 Connection between FPGA and PS/2

Figure 3-27 Y-Cable use for both Keyboard and Mouse

Table 3-24 PS/2 Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

PS2_CLK PIN_AD7 PS/2 Clock 3.3V

PS2_DAT PIN_AE7 PS/2 Data 3.3V

PS2_CLK2 PIN_AD9 PS/2 Clock (reserved for second PS/2 device) 3.3V

PS2_DAT2 PIN_AE9 PS/2 Data (reserved for second PS/2 device) 3.3V

41

3.6.12 A/D Converter and 2x5 Header

The DE1-SoC contains an AD7928 lower power, eight-channel CMOS 12-bit analog-to-digital

converter. This A-to-D provides conversion throughput rates up to 1MSPS. It can be configured to

accept eight input signals at inputs ADC_IN0 through ADC_IN7. This eight input signals are

connected to the 2x5 header, as shown in Figure 3-28.

For more detailed information on the A/D converter chip, please refer to its datasheet which is

available on manufacturer’s website or under the /datasheet folder of the system CD.

Figure 3-28 Pin distribution of the 2x5 Header

Figure 3-29 shows the connections on the 2x5 header, A/D converter and Cyclone V SoC device.

42

Figure 3-29 Wiring for 2x5 header and A/D converter

Table 3-25 Pin Assignments for ADC

Signal Name FPGA Pin No. Description I/O Standard

ADC_CS_N PIN_AJ4 Chip select 3.3V

ADC_DOUT PIN_AK3 Digital data input 3.3V

ADC_DIN PIN_AK4 Digital data output 3.3V

ADC_SCLK PIN_AK2 Digital clock input 3.3V

33..77 IInntteerrffaaccee oonn HHaarrdd PPrroocceessssoorr SSyysstteemm ((HHPPSS))

This section introduces the interfaces connected to the HPS section of the FPGA. Users can access

these interfaces via the HPS processor.

33..77..11 UUsseerr PPuusshh--bbuuttttoonn aanndd LLEEDD oonn HHPPSS

Like the FPGA, the HPS also features its own set of switches, buttons, LEDs, and other user

interfaces. Users can control these interfaces for observing HPS status and debugging.

Table 3-26 gives the all the pin assignments of all the user interfaces.

43

Table 3-26 Pin Assignments for LEDs, Switches and Buttons

Signal Name HPS GPIO Register/bit Function

HPS_KEY GPIO54 GPIO1[25] I/O

HPS_LED GPIO53 GPIO1[24] I/O

33..77..22 GGiiggaabbiitt EEtthheerrnneett

The board provides Ethernet support via an external Micrel KSZ9021RN PHY chip and HPS

Ethernet MAC function. The KSZ9021RN chip with integrated 10/100/1000 Mbps Gigabit Ethernet

transceiver support RGMII MAC interfaces. Figure 3-30 shows the connection setup between the

Gigabit Ethernet PHY and Cyclone V SoC FPGA.

The associated pin assignments are listed in Table 3-27. For detailed information on how to use the

KSZ9021RN refers to its datasheet and application notes, which are available on the manufacturer’s

website.

Figure 3-30 Connections between Cyclone V SoC FPGA and Ethernet

Table 3-27 Pin Assignments for Ethernet PHY

Signal Name FPGA Pin No. Description I/O Standard

HPS_ENET_TX_EN PIN_A20 GMII and MII transmit enable 3.3V

HPS_ENET_TX_DATA[0] PIN_F20 MII transmit data[0] 3.3V

44

HPS_ENET_TX_DATA[1] PIN_J19 MII transmit data[1] 3.3V

HPS_ENET_TX_DATA[2] PIN_F21 MII transmit data[2] 3.3V

HPS_ENET_TX_DATA[3] PIN_F19 MII transmit data[3] 3.3V

HPS_ENET_RX_DV PIN_K17 GMII and MII receive data valid 3.3V

HPS_ENET_RX_DATA[0] PIN_A21 GMII and MII receive data[0] 3.3V

HPS_ENET_RX_DATA[1] PIN_B20 GMII and MII receive data[1] 3.3V

HPS_ENET_RX_DATA[2] PIN_B18 GMII and MII receive data[2] 3.3V

HPS_ENET_RX_DATA[3] PIN_D21 GMII and MII receive data[3] 3.3V

HPS_ENET_RX_CLK PIN_G20 GMII and MII receive clock 3.3V

HPS_ENET_RESET_N PIN_E18 Hardware Reset Signal 3.3V

HPS_ENET_MDIO PIN_E21 Management Data 3.3V

HPS_ENET_MDC PIN_B21 Management Data Clock Reference 3.3V

HPS_ENET_INT_N PIN_C19 Interrupt Open Drain Output 3.3V

HPS_ENET_GTX_CLK PIN_H19 GMII Transmit Clock 3.3V

Additionally, the Ethernet PHY (KSZ9021RNI) LED status has been set to two LED mode. The

LED control signals are connected to LEDs (yellow and green) on the RJ45 connector. States and

definitions can be found in Table 3-28, which can display the current status of the Ethernet. For

example once the green LED lights on , the board has been connected to Giga bit Ethernet.

Table 3-28 LED Mode-Pin Definition

LED (State) LED (Definition) Link /Activity

 LEDG LEDY LEDG LEDY

H H OFF OFF Link off

L H ON OFF 1000 Link / No Activity

Toggle H Blinking OFF 1000 Link / Activity (RX, TX)

H L OFF ON 100 Link / No Activity

H Toggle OFF Blinking 100 Link / Activity (RX, TX)

L L ON ON 10 Link/ No Activity

Toggle Toggle Blinking Blinking 10 Link / Activity (RX, TX)

33..77..33 UUAARRTT

The board has one UART interface connected for communication with the HPS. This interface

wouldn’t support HW flow control signals. The physical interface is done using UART-USB

onboard bridge from an FT232R chip and connects to the host using an USB Mini-B connector. For

detailed information on how to use the transceiver, please refer to the datasheet, which is available

on the manufacturer’s website, or in the Datasheets\UART TO USB folder on the DE1-SoC System

CD. Figure 3-31 shows the related schematics, and Table 3-29 lists the pin assignments of HPS in

Cyclone V SoC FPGA.

45

Figure 3-31 Connections between the Cyclone V SoC FPGA and FT232R Chip

Table 3-29 UART Interface I/O

Signal Name FPGA Pin No. Description I/O Standard

HPS_UART_RX PIN_B25 HPS UART Receiver 3.3V

HPS_UART_TX PIN_C25 HPS UART Transmitter 3.3V

HPS_CONV_USB_N PIN_B15 Reserve 3.3V

33..77..44 DDDDRR33 MMeemmoorryy oonn HHPPSS

The DDR3 devices that are connected to the HPS are the exact same devices connected to the

FPGA in capacity (1GB) and data-width (32-bit), comprised of two x16 devices with a single

address/command bus. This interface connects to dedicate Hard Memory Controller for HPS I/O

banks and the target speed is 400 MHz. Table 3-30 lists DDR3 pin assignments, I/O standards and

descriptions with Cyclone V SoC FPGA.

Table 3-30 Pin Assignments for DDR3 Memory

Signal Name FPGA Pin No. Description I/O Standard

HPS_DDR3_A[0] PIN_F26 HPS DDR3 Address[0] SSTL-15 Class I

HPS_DDR3_A[1] PIN_G30 HPS DDR3 Address[1] SSTL-15 Class I

HPS_DDR3_A[2] PIN_F28 HPS DDR3 Address[2] SSTL-15 Class I

HPS_DDR3_A[3] PIN_F30 HPS DDR3 Address[3] SSTL-15 Class I

HPS_DDR3_A[4] PIN_J25 HPS DDR3 Address[4] SSTL-15 Class I

HPS_DDR3_A[5] PIN_J27 HPS DDR3 Address[5] SSTL-15 Class I

HPS_DDR3_A[6] PIN_F29 HPS DDR3 Address[6] SSTL-15 Class I

HPS_DDR3_A[7] PIN_E28 HPS DDR3 Address[7] SSTL-15 Class I

HPS_DDR3_A[8] PIN_H27 HPS DDR3 Address[8] SSTL-15 Class I

HPS_DDR3_A[9] PIN_G26 HPS DDR3 Address[9] SSTL-15 Class I

HPS_DDR3_A[10] PIN_D29 HPS DDR3 Address[10] SSTL-15 Class I

46

HPS_DDR3_A[11] PIN_C30 HPS DDR3 Address[11] SSTL-15 Class I

HPS_DDR3_A[12] PIN_B30 HPS DDR3 Address[12] SSTL-15 Class I

HPS_DDR3_A[13] PIN_C29 HPS DDR3 Address[13] SSTL-15 Class I

HPS_DDR3_A[14] PIN_H25 HPS DDR3 Address[14] SSTL-15 Class I

HPS_DDR3_BA[0] PIN_E29 HPS DDR3 Bank Address[0] SSTL-15 Class I

HPS_DDR3_BA[1] PIN_J24 HPS DDR3 Bank Address[1] SSTL-15 Class I

HPS_DDR3_BA[2] PIN_J23 HPS DDR3 Bank Address[2] SSTL-15 Class I

HPS_DDR3_CAS_n PIN_E27 DDR3 Column Address Strobe SSTL-15 Class I

HPS_DDR3_CKE PIN_L29 HPS DDR3 Clock Enable SSTL-15 Class I

HPS_DDR3_CK_n PIN_L23 HPS DDR3 Clock Differential 1.5-V SSTL Class I

HPS_DDR3_CK_p PIN_M23 HPS DDR3 Clock p Differential 1.5-V SSTL Class I

HPS_DDR3_CS_n PIN_H24 HPS DDR3 Chip Select SSTL-15 Class I

HPS_DDR3_DM[0] PIN_K28 HPS DDR3 Data Mask[0] SSTL-15 Class I

HPS_DDR3_DM[1] PIN_M28 HPS DDR3 Data Mask[1] SSTL-15 Class I

HPS_DDR3_DM[2] PIN_R28 HPS DDR3 Data Mask[2] SSTL-15 Class I

HPS_DDR3_DM[3] PIN_W30 HPS DDR3 Data Mask[3] SSTL-15 Class I

HPS_DDR3_DQ[0] PIN_K23 HPS DDR3 Data[0] SSTL-15 Class I

HPS_DDR3_DQ[1] PIN_K22 HPS DDR3 Data[1] SSTL-15 Class I

HPS_DDR3_DQ[2] PIN_H30 HPS DDR3 Data[2] SSTL-15 Class I

HPS_DDR3_DQ[3] PIN_G28 HPS DDR3 Data[3] SSTL-15 Class I

HPS_DDR3_DQ[4] PIN_L25 HPS DDR3 Data[4] SSTL-15 Class I

HPS_DDR3_DQ[5] PIN_L24 HPS DDR3 Data[5] SSTL-15 Class I

HPS_DDR3_DQ[6] PIN_J30 HPS DDR3 Data[6] SSTL-15 Class I

HPS_DDR3_DQ[7] PIN_J29 HPS DDR3 Data[7] SSTL-15 Class I

HPS_DDR3_DQ[8] PIN_K26 HPS DDR3 Data[8] SSTL-15 Class I

HPS_DDR3_DQ[9] PIN_L26 HPS DDR3 Data[9] SSTL-15 Class I

HPS_DDR3_DQ[10] PIN_K29 HPS DDR3 Data[10] SSTL-15 Class I

HPS_DDR3_DQ[11] PIN_K27 HPS DDR3 Data[11] SSTL-15 Class I

HPS_DDR3_DQ[12] PIN_M26 HPS DDR3 Data[12] SSTL-15 Class I

HPS_DDR3_DQ[13] PIN_M27 HPS DDR3 Data[13] SSTL-15 Class I

HPS_DDR3_DQ[14] PIN_L28 HPS DDR3 Data[14] SSTL-15 Class I

HPS_DDR3_DQ[15] PIN_M30 HPS DDR3 Data[15] SSTL-15 Class I

HPS_DDR3_DQ[16] PIN_U26 HPS DDR3 Data[16] SSTL-15 Class I

HPS_DDR3_DQ[17] PIN_T26 HPS DDR3 Data[17] SSTL-15 Class I

HPS_DDR3_DQ[18] PIN_N29 HPS DDR3 Data[18] SSTL-15 Class I

HPS_DDR3_DQ[19] PIN_N28 HPS DDR3 Data[19] SSTL-15 Class I

HPS_DDR3_DQ[20] PIN_P26 HPS DDR3 Data[20] SSTL-15 Class I

HPS_DDR3_DQ[21] PIN_P27 HPS DDR3 Data[21] SSTL-15 Class I

HPS_DDR3_DQ[22] PIN_N27 HPS DDR3 Data[22] SSTL-15 Class I

HPS_DDR3_DQ[23] PIN_R29 HPS DDR3 Data[23] SSTL-15 Class I

HPS_DDR3_DQ[24] PIN_P24 HPS DDR3 Data[24] SSTL-15 Class I

HPS_DDR3_DQ[25] PIN_P25 HPS DDR3 Data[25] SSTL-15 Class I

HPS_DDR3_DQ[26] PIN_T29 HPS DDR3 Data[26] SSTL-15 Class I

HPS_DDR3_DQ[27] PIN_T28 HPS DDR3 Data[27] SSTL-15 Class I

47

HPS_DDR3_DQ[28] PIN_R27 HPS DDR3 Data[28] SSTL-15 Class I

HPS_DDR3_DQ[29] PIN_R26 HPS DDR3 Data[29] SSTL-15 Class I

HPS_DDR3_DQ[30] PIN_V30 HPS DDR3 Data[30] SSTL-15 Class I

HPS_DDR3_DQ[31] PIN_W29 HPS DDR3 Data[31] SSTL-15 Class I

HPS_DDR3_DQS_n[0] PIN_M19 HPS DDR3 Data Strobe n[0] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_n[1] PIN_N24 HPS DDR3 Data Strobe n[1] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_n[2] PIN_R18 HPS DDR3 Data Strobe n[2] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_n[3] PIN_R21 HPS DDR3 Data Strobe n[3] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_p[0] PIN_N18 HPS DDR3 Data Strobe p[0] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_p[1] PIN_N25 HPS DDR3 Data Strobe p[1] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_p[2] PIN_R19 HPS DDR3 Data Strobe p[2] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_p[3] PIN_R22 HPS DDR3 Data Strobe p[3] Differential 1.5-V SSTL Class I

HPS_DDR3_ODT PIN_H28 HPS DDR3 On-die Termination SSTL-15 Class I

HPS_DDR3_RAS_n PIN_D30 DDR3 Row Address Strobe SSTL-15 Class I

HPS_DDR3_RESET_n PIN_P30 HPS DDR3 Reset SSTL-15 Class I

HPS_DDR3_WE_n PIN_C28 HPS DDR3 Write Enable SSTL-15 Class I

HPS_DDR3_RZQ PIN_D27 External reference ball for

output drive calibration

1.5 V

33..77..55 QQSSPPII FFllaasshh

The board supports a 1G-bit serial NOR flash device for non-volatile storage of HPS boot code,

user data and program. The device is connected to HPS dedicated interface. It may contain

secondary boot code.

This device has a 4-bit data interface and uses 3.3V CMOS signaling standard. Connections

between Cyclone V SoC FPGA and Flash are shown in Figure 3-32.

To program the QSPI flash, the HPS Flash Programmer is provided both as part of the Altera

Quartus II suite and as part of the free Altera Quartus II Programmer. The HPS Flash Programmer

sends file contents over an Altera download cable, such as the USB Blaster II, to the HPS, and

instructs the HPS to write the data to the flash memory.

48

Figure 3-32 Connections Between Cyclone V SoC FPGA and QSPI Flash

Table 3-31 below summarizes the pins on the flash device. Signal names are from the device

datasheet and directions are relative to the Cyclone V SoC FPGA.

Table 3-31 QSPI Flash Interface I/O

Signal Name FPGA Pin No. Description I/O Standard

HPS_FLASH_DATA[0] PIN_C20 HPS FLASH Data[0] 3.3V

HPS_FLASH_DATA[1] PIN_H18 HPS FLASH Data[1] 3.3V

HPS_FLASH_DATA[2] PIN_A19 HPS FLASH Data[2] 3.3V

HPS_FLASH_DATA[3] PIN_E19 HPS FLASH Data[3] 3.3V

HPS_FLASH_DCLK PIN_D19 HPS FLASH Data Clock 3.3V

HPS_FLASH_NCSO PIN_A18 HPS FLASH Chip Enable 3.3V

33..77..66 MMiiccrroo SSDD

The board supports Micro SD card interface using x4 data lines. And it may contain secondary boot

code for HPS. Figure 3-33 shows the related signals.

Finally, Table 3-32 lists all the associated pins for interfacing HPS respectively.

49

Figure 3-33 Connections between Cyclone V SoC FPGA and SD Card Socket

Table 3-32 SD Card Socket Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

HPS_SD_CLK PIN_A16 HPS SD Clock 3.3V

HPS_SD_CMD PIN_F18 HPS SD Command Line 3.3V

HPS_SD_DATA[0] PIN_G18 HPS SD Data[0] 3.3V

HPS_SD_DATA[1] PIN_C17 HPS SD Data[1] 3.3V

HPS_SD_DATA[2] PIN_D17 HPS SD Data[2] 3.3V

HPS_SD_DATA[3] PIN_B16 HPS SD Data[3] 3.3V

33..77..77 22--ppoorrtt UUSSBB HHoosstt

The board provides 2-port USB 2.0 host interfaces using the SMSC USB3300 controller and 2-port

hub controller. A SMSC USB3300 device in a 32-pin QFN package device is used to interface to a

SMSC USB2512B. This device supports UTMI+ Low Pin Interface (ULPI) to communicate to USB

2.0 controller in HPS. By connecting the ID pin of USB3300 to ground, the PHY operates in Host

mode. When operating in Host mode, the interface will supply the power to the device through the

2-port USB type-A interface. Figure 3-34 shows the schematic diagram of the USB circuitry; the

pin assignments for the associated interface are listed in Table 3-33.

50

Figure 3-34 Connections between Cyclone V SoC FPGA and USB OTG PHY

Table 3-33 USB OTG PHY Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

HPS_USB_CLKOUT PIN_N16 60MHz Reference Clock Output 3.3V

HPS_USB_DATA[0] PIN_E16 HPS USB_DATA[0] 3.3V

HPS_USB_DATA[1] PIN_G16 HPS USB_DATA[1] 3.3V

HPS_USB_DATA[2] PIN_D16 HPS USB_DATA[2] 3.3V

HPS_USB_DATA[3] PIN_D14 HPS USB_DATA[3] 3.3V

HPS_USB_DATA[4] PIN_A15 HPS USB_DATA[4] 3.3V

HPS_USB_DATA[5] PIN_C14 HPS USB_DATA[5] 3.3V

HPS_USB_DATA[6] PIN_D15 HPS USB_DATA[6] 3.3V

HPS_USB_DATA[7] PIN_M17 HPS USB_DATA[7] 3.3V

HPS_USB_DIR PIN_E14 Direction of the Data Bus 3.3V

HPS_USB_NXT PIN_A14 Throttle the Data 3.3V

HPS_USB_RESET PIN_G17 HPS USB PHY Reset 3.3V

HPS_USB_STP PIN_C15 Stop Data Stream on theBus 3.3V

33..77..88 GG--SSeennssoorr

The board is equipped with a digital accelerometer sensor module. The ADXL345 is a small, thin,

ultralow power assumption 3-axis accelerometer with high-resolution measurement. Digitalized

output is formatted as 16-bit twos complement and can be accessed using I2C interface. The I2C

address of the G-Sensor device is 0xA6/0xA7. For more detailed information of better using this

chip, please refer to its datasheet which is available on manufacturer’s website or under the

Datasheet folder of the DE1-SoC System CD. Figure 3-35 shows the connections between

ADXL345 and HPS. The associated pin assignments are listed in Table 3-34.

51

Figure 3-35 Connections between Cyclone V SoC FPGA and G-Sensor

Table 3-34 G-Sensor Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

HPS_GSENSOR_INT PIN_B22 HPS GSENSOR Interrupt Output 3.3V

HPS_I2C1_SCLK PIN_E23 HPS I2C Clock (share bus with LTC) 3.3V

HPS_I2C1_SDAT PIN_C24 HPS I2C Data (share bus) 3.3V

33..77..99 LLTTCC CCoonnnneeccttoorr

The board allows connection to interface card from Linear Technology. The interface is

implemented using a14-pin header that can be connected to a variety of demo boards from Linear

Technology. It will be connected to SPI Master and I2C ports of the HPS to allow bidirectional

communication with two types of protocols. The 14-pin header will allow for GPIO, SPI and I2C

extension for user purposes if the interfaces to Linear Technology board aren’t in use. Connections

between the LTC connector and the HPS are shown in Figure 3-36, and the functions of the 14 pins

is listed in Table 3-25.

52

Figure 3-36 Connections between the LTC Connector and HPS

Table 3-35 LTC Connector Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

HPS_LTC_GPIO PIN_H17 HPS LTC GPIO 3.3V

HPS_I2C2_SCLK PIN_H23 HPS I2C2 Clock (share bus with

G-Sensor)

3.3V

HPS_I2C2_SDAT PIN_A25 HPS I2C2 Data (share bus with

G-Sensor)

3.3V

HPS_SPIM_CLK PIN_C23 SPI Clock 3.3V

HPS_SPIM_MISO PIN_E24 SPI Master Input/Slave Output 3.3V

HPS_SPIM_MOSI PIN_D22 SPI Master Output /Slave Input 3.3V

HPS_SPIM_SS PIN_D24 SPI Slave Select 3.3V

53

Chapter 4

DE1-SoC System

Builder

This chapter describes how users can create a custom design project on the board by using the

DE1-SoC Software Tool – DE1-SoC System Builder.

44..11 IInnttrroodduuccttiioonn

The DE1-SoC System Builder is a Windows-based software utility, designed to assist users to create

a Quartus II project for the board within minutes. The generated Quartus II project files include:

 Quartus II Project File (.qpf)

 Quartus II Setting File (.qsf)

 Top-Level Design File (.v)

 Synopsis Design Constraints file (.sdc)

 Pin Assignment Document (.htm)

By providing the above files, the DE1-SoC System Builder prevents occurrence of situations that

are prone to errors when users manually edit the top-level design file or place pin assignments. The

common mistakes that users encounter are the following:

1. Board damage due to wrong pin/bank voltage assignments.

2. Board malfunction caused by wrong device connections or missing pin counts for connected

ends.

3. Performance degeneration due to improper pin assignments.

44..22 GGeenneerraall DDeessiiggnn FFllooww

This section will introduce the general design flow to build a project for the development board via

the DE1-SoC System Builder. The general design flow is illustrated in Figure 4-1.

54

Users should launch the DE1-SoC System Builder and create a new project according to their

design requirements. When users complete the settings, the DE1-SoC System Builder will generate

two major files, a top-level design file (.v) and a Quartus II setting file (.qsf).

The top-level design file contains top-level Verilog HDL wrapper for users to add their own

design/logic. The Quartus II setting file contains information such as FPGA device type, top-level

pin assignment, and the I/O standard for each user-defined I/O pin.

Finally, the Quartus II programmer must be used to download SOF file to the development board

using a JTAG interface.

Figure 4-1 The general design flow of building a design

44..33 UUssiinngg DDEE11--SSooCC SSyysstteemm BBuuiillddeerr

This section provides the detailed procedures on how the DE1-SoC System Builder is used.

 Install and launch the DE1-SoC System Builder

The DE1-SoC System Builder is located in the directory: “Tools\SystemBuilder” on the DE1-SoC

55

System CD. Users can copy the whole folder to a host computer without installing the utility.

Launch the DE1-SoC System Builder by executing the DE1-SoC SystemBuilder.exe on the host

computer and the GUI window will appear as shown in Figure 4-2.

Figure 4-2 The DE1-SoC System Builder window

 Input Project Name

Input project name as show in Figure 4-3.

Project Name: Type in an appropriate name here, it will automatically be assigned as the name of

your top-level design entity.

56

Figure 4-3 Board Type and Project Name

 System Configuration

Under the System Configuration users are given the flexibility of enabling their choice of included

components on the board as shown in Figure 4-4. Each component of the board is listed where

users can enable or disable a component according to their design by simply marking a check or

removing the check in the field provided. If the component is enabled, the DE1-SoC System

Builder will automatically generate the associated pin assignments including the pin name, pin

location, pin direction, and I/O standard.

57

Figure 4-4 System Configuration Group

 GPIO Expansion

Users can connect GPIO daughter cards onto the GPIO connector located on the development board

shown in Figure 4-5. Select the daughter card you wish to add to your design under the appropriate

GPIO connector to which the daughter card is connected. The System Builder will automatically

generate the associated pin assignment including pin name, pin location, pin direction, and I/O

standard.

58

Figure 4-5 GPIO Expansion Group

The “Prefix Name” is an optional feature that denotes the pin name of the daughter card assigned in

your design. Users may leave this field empty.

 Project Setting Management

The DE1-SoC System Builder also provides functions to restore default setting, loading a setting,

and saving users’ board configuration file shown in Figure 4-6. Users can save the current board

configuration information into a .cfg file and load it to the DE1-SoC System Builder.

59

Figure 4-6 Project Settings

 Project Generation

When users press the Generate button, the DE1-SoC System Builder will generate the

corresponding Quartus II files and documents as listed in the Table 4-1:

Table 4-1 The files generated by DE1-SoC System Builder

No. Filename Description

1 <Project name>.v Top level Verilog HDL file for Quartus II

2 <Project name>.qpf Quartus II Project File

3 <Project name>.qsf Quartus II Setting File

4 <Project name>.sdc Synopsis Design Constraints file for Quartus II

5 <Project name>.htm Pin Assignment Document

Users can use Quartus II software to add custom logic into the project and compile the project to

generate the SRAM Object File (.sof).

60

Chapter 5

Examples For FPGA

This chapter provides a number of examples of advanced circuits implemented by RTL or Qsys on

the DE1-SoC board. These circuits provide demonstrations of the major features which connected

to FPGA interface on the board, such as audio, SDRAM and IR receiver. All of the associated files

can be found in the Demonstrations/FPGA folder on the DE1-SoC System CD.

 Installing the Demonstrations

To install the demonstrations on your computer:

Copy the directory Demonstrations into a local directory of your choice. It is important to ensure

that the path to your local directory contains no spaces – otherwise, the Nios II software will not

work. Note Quartus II v13 or later is required for all DE1-SoC demonstrations to support Cyclone V

SoC device.

55..11 DDEE11--SSooCC FFaaccttoorryy CCoonnffiigguurraattiioonn

The DE1-SoC board is shipped from the factory with a default configuration bit-stream that

demonstrates some of the basic features of the board. The setup required for this demonstration, and

the locations of its files are shown below.

 Demonstration Setup, File Locations, and Instructions

 Project directory: DE1_SoC_Default

 Bit stream used: DE1_SoC_Default.sof or DE1_SoC_Default.jic

 Power on the DE1-SoC board, with the USB cable connected to the USB Blaster port. If

necessary (that is, if the default factory configuration of the DE1-SoC board is not currently

stored in EPCQ device), download the bit stream to the board by using JTAG programming

 You should now be able to observe that the 7-segment displays are displaying a sequence of

characters, and the red LEDs are flashing.

 Optionally connect a VGA display to the VGA D-SUB connector. When connected, the VGA

61

display should show a color picture

 Optionally connect a powered speaker to the stereo audio-out jack. Press KEY[1] to hear a 1

kHz humming sound from the audio-out port.

 There is a demo_batch folder in the project. It is able to load the bit stream into the FPGA ,

programming or erasing .jic file to EPCQ by executing test.bat file as shown in the Figure 5-1.If

user want to download the new design into the EPCQ, the easy method is to copy the new .sof

file into the demo_batch folder and Execute the test.bat. Select the option “2” to covert the .sof

to .jic firstly. Then using the option”3” to program .jic file into EPCQ.

Figure 5-1 Batch file for download FPGA and EPCQ

55..22 AAuuddiioo RReeccoorrddiinngg aanndd PPllaayyiinngg

This demonstration shows how to implement an audio recorder and player using the DE1-SoC

board with the built-in Audio CODEC chip. This demonstration is developed based on Qsys and

Eclipse. Figure 5-2 shows the man-machine interface of this demonstration. Two push-buttons and

four slide switches are used for users to configure this audio system: SW0 is used to specify

recording source to be Line-in or MIC-In. SW1, SW2, and SW3 are used to specify recording

sample rate as 96K, 48K, 44.1K, 32K, or 8K. Table 5-1 and Table 5-2 summarize the usage of

Slide switches for configuring the audio recorder and player.

62

Figure 5-2 Man-Machine Interface of Audio Recorder and Player

Figure 5-3 shows the block diagram of the Audio Recorder and Player design. There are hardware

and software parts in the block diagram. The software part stores the Nios II program in the on-chip

memory. The software part is built by Eclipse in C programming language. The hardware part is

built by Qsys under Quartus II. The hardware part includes all the other blocks. The “AUDIO

Controller” is a user-defined Qsys component. It is designed to send audio data to the audio chip or

receive audio data from the audio chip.

The audio chip is programmed through I2C protocol which is implemented in C code. The I2C pins

from audio chip are connected to Qsys System Interconnect Fabric through PIO controllers. In this

example, the audio chip is configured in Master Mode. The audio interface is configured as I2S and

16-bit mode. 18.432MHz clock generated by the PLL is connected to the MCLK/XTI pin of the

audio chip through the AUDIO Controller.

63

Figure 5-3 Block diagram of the audio recorder and player

 Demonstration Setup, File Locations, and Instructions

 Hardware Project directory: DE1_SoC _Audio

 Bit stream used: DE1_SoC _Audio.sof

 Software Project directory: DE1_SoC _Audio\software

 Connect an Audio Source to the LINE-IN port of the DE1-SoC board.

 Connect a Microphone to MIC-IN port on the DE1-SoC board.

 Connect a speaker or headset to LINE-OUT port on the DE1-SoC board.

 Load the bit stream into FPGA. (note *1)

 Load the Software Execution File into FPGA. (note *1)

 Configure audio with the Slide switches SW0 as shown in Table 5-1.

 Press KEY3 on the DE1-SoC board to start/stop audio recording (note *2)

 Press KEY2 on the DE1-SoC board to start/stop audio playing (note *3)

Table 5-1 Slide switches usage for audio source

Slide Switches 0 – DOWN Position 1 – UP Position

SW0 Audio is from MIC Audio is from LINE-IN

64

Table 5-2 Slide switch setting for sample rate switching for audio recorder and player

SW5

(0 – DOWN;

1- UP)

SW4

(0 – DOWN;

1-UP)

SW3

(0 – DOWN;

1-UP)

Sample Rate

0 0 0 96K

0 0 1 48K

0 1 0 44.1K

0 1 1 32K

1 0 0 8K

Unlisted combination 96K

Note:

(1). Execute DE1_SoC _Audio \demo_batch\ DE1-SoC _Audio.bat will download .sof and .elf

files.

(2). Recording process will stop if audio buffer is full.

(3). Playing process will stop if audio data is played completely.

55..33 AA KKaarraaookkee MMaacchhiinnee

This demonstration uses the microphone-in, line-in, and line-out ports on the DE1-SOC board to

create a Karaoke Machine application. The WM8731 CODEC is configured in the master mode,

with which the audio CODEC generates AD/DA serial bit clock (BCK) and the left/right channel

clock (LRCK) automatically. As indicated in Figure 5-4, the I2C interface is used to configure the

Audio CODEC. The sample rate and gain of the CODEC are set in this manner, and the data input

from the line-in port is then mixed with the microphone-in port and the result is sent to the line-out

port.

For this demonstration the sample rate is set to 48kHz. Pressing the pushbutton KEY0 reconfigures

the gain of the audio CODEC via I2C bus, cycling within ten predefined gain values (volume levels)

provided by the device.

65

Figure 5-4 Block diagram of the Karaoke Machine demonstration

 Demonstration Setup, File Locations, and Instructions

 Project directory: DE1_SOC_i2sound

 Bit stream used: DE1_SOC_i2sound.sof

 Connect a microphone to the microphone-in port (pink color) on the DE1-SOC board

 Connect the audio output of a music-player, such as an MP3 player or computer, to the line-in

port (blue color) on the DE1-SOC board

 Connect a headset/speaker to the line-out port (green color) on the DE1-SOC board

 Load the bit stream into the FPGA by execute the batch file ‘DE1_SOC_i2sound’ under the

DE1_SOC_i2sound\demo_batch folder

 You should be able to hear a mixture of the microphone sound and the sound from the music

player

 Press KEY0 to adjust the volume; it cycles between volume levels 0 to 9

Figure 5-5 illustrates the setup for this demonstration.

66

Figure 5-5 Setup for the Karaoke Machine

55..44 SSDDRRAAMM TTeesstt bbyy NNiiooss IIII

Many applications use SDRAM to provide temporary storage. In this demonstration hardware and

software designs are provided to illustrate how to perform memory access in QSYS. We describe

how the Altera’s SDRAM Controller IP is used to access a SDRAM, and how the Nios II processor

is used to read and write the SDRAM for hardware verification. The SDRAM controller handles the

complex aspects of using SDRAM by initializing the memory devices, managing SDRAM banks,

and keeping the devices refreshed at appropriate intervals.

 System Block Diagram

Figure 5-6 shows the system block diagram of this demonstration. The system requires a 50 MHz

clock provided from the board. The SDRAM controller is configured as a 64MB controller. The

working frequency of the SDRAM controller is 100MHz, and the Nios II program is running in the

on-chip memory.

67

Figure 5-6 Block diagram of the SDRAM Basic Demonstration

The system flow is controlled by a Nios II program. First, the Nios II program writes test patterns

into the whole 64MB of SDRAM. Then, it calls Nios II system function, alt_dcache_flush_all, to

make sure all data has been written to SDRAM. Finally, it reads data from SDRAM for data

verification. The program will show progress in JTAG-Terminal when writing/reading data to/from

the SDRAM. When verification process is completed, the result is displayed in the JTAG-Terminal.

 Design Tools

 Quartus II 13.0

 Nios II Eclipse 13.0

 Demonstration Source Code

 Quartus Project directory: DE1_SoC_SDRAM_Nios_Test

 Nios II Eclipse: DE1_SoC_SDRAM_Nios_Test \Software

 Nios II Project Compilation

 Before you attempt to compile the reference design under Nios II Eclipse, make sure the project

is cleaned first by clicking ‘Clean’ from the ‘Project’ menu of Nios II Eclipse.

68

 Demonstration Batch File

Demo Batch File Folder:

DE1_SoC_SDRAM_Nios_Test \demo_batch

The demo batch file includes following files:

 Batch File for USB-Blaster (II) : DE1_SoC_SDRAM_Nios_Test.bat,

DE1_SoC_SDRAM_Nios_Test_bashrc

 FPGA Configure File : DE1_SoC_SDRAM_Nios_Test.sof

 Nios II Program: DE1_SoC_SDRAM_Nios_Test.elf

 Demonstration Setup

 Make sure Quartus II and Nios II are installed on your PC.

 Power on the DE1-SoC board.

 Use USB cable to connect PC and the DE1-SoC board (J13) and install USB Blaster driver if

necessary.

Execute the demo batch file “DE1_SoC_SDRAM_Nios_Test.bat” for USB-Blaster II under the

batch file folder, DE1_SoC_SDRAM_Nios_Test\demo_batch

 After Nios II program is downloaded and executed successfully, a prompt message will be

displayed in nios2-terminal.

 Press KEY3~KEY0 of the DE1-SoC board to start SDRAM verify process. Press KEY0 for

continued test.

 The program will display progressing and result information, as shown in Figure 5-7.

69

Figure 5-7 Display Progress and Result Information for the SDRAM Demonstration

55..55 SSDDRRAAMM RRTTLL TTeesstt

This demonstration presents a memory test function on the bank of SDRAM on the DE1-SoC board.

The memory size of the SDRAM bank is 64MB and all the test codes on this demonstration are

written in Verilog HDL.

 Function Block Diagram

Figure 5-8 shows the function block diagram of this demonstration. The controller uses 50 MHz as

a reference clock, generates one 100 MHz clock as memory clock.

70

Figure 5-8 Block Diagram of the SDRAM Demonstration

RW_test modules read and write the entire memory space of the SDRAM through the interface of

the controller. In this project, the read/write test module will first write the entire memory and then

compare the read back data with the regenerated data (the same sequence as the write data). KEY0

will trigger test control signals for the SDRAM, and the LEDs will indicate the test results

according to Table 5-3.

 Design Tools

 Quartus 13.0

 Demonstration Source Code

 Project directory: DE1_SoC_SDRAM_RTL_Test

 Bit stream used: DE1_SoC_SDRAM_RTL_Test.sof

 Demonstration Batch File

Demo Batch File Folder: DE1_SoC_SDRAM_RTL_Test\demo_batch

The demo batch file includes following files:

 Batch File: DE1_SoC_SDRAM_RTL_Test.bat

 FPGA Configure File: DE1_SoC_SDRAM_RTL_Test.sof

 Demonstration Setup

 Make sure Quartus II is installed on your PC.

71

 Connect the USB cable to the USB Blaster connector on the DE1_SoC board and host PC.

 Power on the DE1_SoC board.

 Execute the demo batch file “ DE1_SoC_SDRAM_RTL_Test.bat” under the batch file folder,

DE1_SoC_SDRAM_RTL_Test \demo_batch.

 Press KEY0 on the DE1_SoC board to start the verification process. When KEY0 is pressed,

the LEDs (LEDR [2:0]) should turn on. At the instant of releasing KEY0, LEDR1, LEDR2

should start blinking. After approximately 8 seconds, LEDR1 should stop blinking and stay on

to indicate that the SDRAM has passed the test, respectively. Table 5-3 lists the LED

indicators.

 If LEDR2 is not blinking, it means 50MHz clock source is not working.

 If LEDR1 fail to remain on after 8 seconds, the corresponding SDRAM test has failed.

 Press KEY0 again to regenerate the test control signals for a repeat test.

Table 5-3 LED Indicators

Table

5-4NAME Description

LEDR0 Reset

LEDR1 If light, SDRAM test pass

LEDR2 Blinks

55..66 TTVV BBooxx DDeemmoonnssttrraattiioonn

This demonstration plays video and audio input from a DVD player using the VGA output, audio

CODEC, and one TV decoder on the DE1-SoC board. Figure 5-9 shows the block diagram of the

design. There are two major blocks in the circuit, called I2C_AV_Config and TV_to_VGA. The

TV_to_VGA block consists of the ITU-R 656 Decoder, SDRAM Frame Buffer, YUV422 to

YUV444, YCbCr to RGB, and VGA Controller. The figure also shows the TV Decoder (ADV7180)

and the VGA DAC (ADV7123) chips used.

As soon as the bit stream is downloaded into the FPGA, the register values of the TV Decoder chip

are used to configure the TV decoder via the I2C_AV_Config block, which uses the I2C protocol to

communicate with the TV Decoder chip. Following the power-on sequence, the TV Decoder chip

will be unstable for a time period; the Lock Detector is responsible for detecting this instability.

The ITU-R 656 Decoder block extracts YcrCb 4:2:2 (YUV 4:2:2) video signals from the ITU-R 656

data stream sent from the TV Decoder. It also generates a data valid control signal indicating the

valid period of data output. Because the video signal from the TV Decoder is interlaced, we need to

perform de-interlacing on the data source. We used the SDRAM Frame Buffer and a field selection

72

multiplexer (MUX) which is controlled by the VGA controller to perform the de-interlacing

operation. Internally, the VGA Controller generates data request and odd/even selection signals to

the SDRAM Frame Buffer and filed selection multiplexer (MUX). The YUV422 to YUV444 block

converts the selected YcrCb 4:2:2 (YUV 4:2:2) video data to the YcrCb 4:4:4 (YUV 4:4:4) video

data format.

Finally, the YcrCb_to_RGB block converts the YcrCb data into RGB data output. The VGA

Controller block generates standard VGA synchronous signals VGA_HS and VGA_VS to enable

the display on a VGA monitor.

Figure 5-9 Block diagram of the TV box demonstration

DDeemmoonnssttrraattiioonn SSoouurrccee CCooddee

 Project directory: DE1_SoC_TV

 Bit stream used: DE1_SoC_TV.sof

DDeemmoonnssttrraattiioonn BBaattcchh FFiillee

Demo Batch File Folder: DE1_SoC_TV \demo_batch

The demo batch file includes the following files:

 Batch File: DE1_SoC_TV.bat

 FPGA Configure File : DE1_SoC_TV.sof

73

DDeemmoonnssttrraattiioonn SSeettuupp,, FFiillee LLooccaattiioonnss,, aanndd IInnssttrruuccttiioonnss

 Connect a DVD player’s composite video output (yellow plug) to the Video-In RCA jack (J6) of

the DE1-SoC board (See Figure 5-10). The DVD player has to be configured to provide:

 NTSC output

 60Hz refresh rate

 4:3 aspect ratio

 Non-progressive video

 Connect the VGA output of the DE1-SoC board to a VGA monitor (both LCD and CRT type of

monitors should work).

 Connect the audio output of the DVD player to the line-in port of the DE1-SoC board and

connect a speaker to the line-out port. If the audio output jacks from the DVD player are RCA

type, then an adaptor will be needed to convert to the mini-stereo plug supported on the

DE1-SoC board; this is the same type of plug supported on most computers.

 Load the bit stream into FPGA by execute the batch file ‘DE1_SoC_TV.bat’ under

DE1_SoC_TV \demo_batch\ folder. Press KEY0 on the DE1-SoC board to reset the circuit

Figure 5-10 Setup for the TV box demonstration

74

55..77 PPSS//22 MMoouussee DDeemmoonnssttrraattiioonn

We offer this simple PS/2 controller coded in Verilog HDL to demonstrate bidirectional

communication between PS/2 controller and the device, the PS/2 mouse. You can treat it as a

how-to basis and develop your own controller that could accomplish more sophisticated instructions,

like setting the sampling rate or resolution, which need to transfer two data bytes.

For detailed information about the PS/2 protocol, please perform an appropriate search on various

educational web sites. Here we give a brief introduction:

 Outline

PS/2 protocol use two wires for bidirectional communication, one clock line and one data line. The

PS/2 controller always has total control over the transmission line, but the PS/2 device generates

clock signal during data transmission.

 Data transmit from the device to controller

After sending an enabling instruction to the PS/2 mouse at stream mode, the device starts to send

displacement data out, which consists of 33 bits. The frame data is cut into three similar slices, each

of them containing a start bit (always zero) and eight data bits (with LSB first), one parity check bit

(odd check), and one stop bit (always one).

PS/2 controller samples the data line at the falling edge of the PS/2 clock signal. This could easily

be implemented using a shift register of 33 bits, but be cautious with the clock domain crossing

problem.

 Data transmit from the controller to device

Whenever the controller wants to transmit data to device, it first pulls the clock line low for more

than one clock cycle to inhibit the current transmit process or to indicate the start of a new transmit

process, which usually be called as inhibit state. After that, it pulls low the data line then release the

clock line, and this is called the request state. The rising edge on the clock line formed by the

release action can also be used to indicate the sample time point as for a 'start bit. The device will

detect this succession and generates a clock sequence in less than 10ms time. The transmit data

consists of 12bits, one start bit (as explained before), eight data bits, one parity check bit (odd

check), one stop bit (always one), and one acknowledge bit (always zero). After sending out the

parity check bit, the controller should release the data line, and the device will detect any state

75

change on the data line in the next clock cycle. If there’s no change on the data line for one clock

cycle, the device will pull low the data line again as an acknowledgement which means that the data

is correctly received.

After the power on cycle of the PS/2 mouse, it enters into stream mode automatically and disable

data transmit unless an enabling instruction is received. Figure 5-11 shows the waveform while

communication happening on two lines.

Figure 5-11 Waveforms on two lines while communication taking place

DDeemmoonnssttrraattiioonn SSoouurrccee CCooddee

 Project directory: DE1_SoC_PS2_DEMO

 Bit stream used: DE1_SoC_PS2_DEMO.sof

76

DDeemmoonnssttrraattiioonn BBaattcchh FFiillee

Demo Batch File Folder: DE1_SoC_PS2_DEMO \demo_batch

The demo batch file includes the following files:

 Batch File: DE1_SoC_PS2_DEMO.bat

 FPGA Configure File : DE1_SoC_PS2_DEMO.sof

DDeemmoonnssttrraattiioonn SSeettuupp,, FFiillee LLooccaattiioonnss,, aanndd IInnssttrruuccttiioonnss

 Load the bit stream into FPGA by executing DE1_SoC_PS2_DEMO \demo_batch\

DE1_SoC_PS2_DEMO.bat

 Plug in the PS/2 mouse

 Press KEY[0] for enabling data transfer

 Press KEY[1] to clear the display data cache

 You should see digital changes on 7-segment display when the PS/2 mouse moves, and the

LEDR[2:0] will blink respectively when the left-button, right-button or middle-button is pressed.

Table 5-5 gives the detailed information.

Table 5-5 Detailed information of the indicators

Indicator Name Description

LEDR[0] Left button press indicator

LEDR[1] Right button press indicator

LEDR[2] Middle button press indicator

HEX0 Low byte of X displacement

HEX1 High byte of X displacement

HEX2 Low byte of Y displacement

HEX3 High byte of Y displacement

55..88 IIRR EEmmiitttteerr LLEEDD aanndd RReecceeiivveerr DDeemmoonnssttrraattiioonn

In this demonstration we show a simple example of using IR Emitter LED and IR receiver. All the

codes in this demonstration are coding by verilog HDL.

77

Figure 5-12 Block Diagram of the IR Emitter LED and Receiver Demonstration

Figure 5-12 shows the block diagram of the design. It mainly implement a IR TX Controller and a

IR RX Controller. When KEY0 is pressed, Data test pattern generator continuously generates data

to the IR TX Controller. When IR TX Controller works, it will format the sending data into NEC IR

transmission protocol and send it out through IR emitter LED. IR receiver will decode the received

data and display it on six HEXs. Also, user can use a remote controller to sending data to IR

Receiver. The main function of IR TX /RX controller and IR remote in this demonstration will be

described in below:

 IR TX Controller

User can input 8-bit address and 8-bits command into IR TX Controller. IR TX Controller will encode

the the address and command first , and send it out according to NEC IR transmission protocol through

IR emitter LED. Note that the input clock of the Controller should be 50MHz.

The NEC IR transmission protocol uses pulse distance encoding of the message bits. Each pulse burst is

562.5µs in length, at a carrier frequency of 38kHz (26.3µs). As shown in Figure 5-13,Logical bits are

transmitted as follows:

• Logical '0' – a 562.5µs pulse burst followed by a 562.5µs space, with a total transmit time

of 1.125ms

• Logical '1' – a 562.5µs pulse burst followed by a 1.6875ms space, with a total transmit time

78

of 2.25ms

Figure 5-13 Logical “1”and Logical “0”

Figure 5-14 shows the frame of the protocol. Protocol will send a lead code first, a 9ms leading pulse

burst followed by a 4.5msThe second inversed data is sent to verify the accuracy of the information

received. At last, a final 562.5µs pulse burst to signify the end of message transmission.. Because every

time it is sent inversed data, the overall transmission time is constant.

Figure 5-14 Typical frame of NEC protocol

Note: IR Receiver receives the signal a inverted value(e.g. IR TX Controller send a lead code 9 ms high

then 4.5 ms low, IR Receiver will receive a 9 ms low then 4.5 ms high lead code).

 IR Remote

When a key on the remote controller(See Figure 5-15) is pressed, the remote controller will emit a

standard frame, shown in Table 5-6 The beginning of the frame is the lead code represents the start

bit, and then is the key-related information, and the last 1 bit end code represents the end of the

79

frame.(This frame is descript the signal which IR Receiver Received)

Figure 5-15 Remote controller

Table 5-6 Key code information for each Key on remote controller

Key Key Code Key Key Code Key Key Code Key Key Code

0x0F

0x13

0x10

0x12

0x01

0x02

0x03

0x1A

0x04

0x05

0x06

0x1E

0x07

0x08

0x09

0x1B

0x11

0x00

0x17

0x1F

0x16

0x14

0x18

0x0C

80

Lead Code 1bit Custom Code 16bits Key Code 8bits
Inv Key Code

8bits

End

Code

1bit

Figure 5-16 The transmitting frame of the IR remote controller

 IR RX Controller

In this demo, the IP of IR receiver controller is implemented in the FPGA. As Figure 5-17 show, it

includes Code Detector, State Machine, and Shift Register. First, the IR receiver demodulates the

signal inputs to Code Detector block .The Code Detector block will check the Lead Code and

feedback the examination result to State Machine block.

The State Machine block will change the state from IDLE to GUIDANCE once the Lead code is

detected. Once the Code Detector has detected the Custom Code status, the current state will change

from GUIDANCE to DATAREAD state. At this state, the Code Detector will save the receiving

data and output to Shift Register then displays it on 7-segment displays. Figure 5-18 shows the

state shift diagram of State Machine block. Note that the input clock should be 50MHz.

Figure 5-17 The IR Receiver controller

81

Figure 5-18 State shift diagram of State Machine

DDeemmoonnssttrraattiioonn SSoouurrccee CCooddee

 Project directory: DE1_SoC_IR

 Bit stream used: DE1_SOC_IR.sof

DDeemmoonnssttrraattiioonn BBaattcchh FFiillee

Demo Batch File Folder: DE1_SoC_IR \demo_batch

The demo batch file includes the following files:

 Batch File: DE1_SoC_IR.bat

 FPGA Configure File : DE1_SOC_IR.sof

DDeemmoonnssttrraattiioonn SSeettuupp,, FFiillee LLooccaattiioonnss,, aanndd IInnssttrruuccttiioonnss

 Load the bit stream into FPGA by executing DE1_SoC_IR \demo_batch\ DE1_SoC_IR.bat

 Press KEY[0] to enable the continuously pattern sending out by IR TX Controller.

 Observe the six HEXs (See Table 5-7 for detail)

 Releasing KEY[0] to stop the IR TX.

 Point the IR receiver with the remote-controller and press any button

 Observe the six HEXs(See Table 5-7 for detail)

 And User can using Multi DE1_SoC boards to do more IR test between boards.

82

Table 5-7 Detailed information of the indicators

Indicator Name Description

HEX5 Inversed high byte of DATA(Key Code)

HEX4 Inversed low byte of DATA(Key Code)

HEX3 High byte of ADDRESS(Custom Code)

HEX2 Low byte of ADDRESS(Custom Code)

HEX1 High byte of DATA(Key Code)

HEX0 Low byte of DATA (Key Code)

55..99 AADDCC RReeaaddiinngg

This demonstration illustrates steps which can be used to evaluate the performance of the 8-channel

12-bit A/D Converter ADC7928. The DC 5.0V on the 2x5 header is used to drive the analog signals

and by using a trimmer potentiometer, the voltage can be adjusted within the range of 0~5.0V. The

12-bit voltage measurements are indicated on the NIOS II console. Figure 5-19 shows the block

diagram of this demonstration.

Note that，the input voltage range is 0-5V，and if your input voltage is -2.5-2.5V，you can make the

pre-scale circuit to adjust their range to 0-5V.

Figure 5-19 ADC Reading Block Diagram

83

Figure 5-20 depicts the pin arrangement of the 2x5 header. In this demonstration, this header is the

input source of ADC convertor. Users can connect a trimmer to the specified ADC channel

(ADC_IN0 ~ ADC_IN7) that provides voltage to the ADC convert. Then FPGA will read the

associated register in the convertor via serial interface and translates it to voltage value displayed on

the NIOS II console

Figure 5-20 ADC Pin distribution of the 2x5 Header

 System Requirements

The following items are required for the ADC Reading demonstration

o DE1-SoC board x1

o Trimmer Potentiometer x1

o Wire Strip x3

 Demonstration File Locations

 Hardware Project directory: DE1_SoC_ADC

 Bit stream used: DE1_SoC_ADC.sof

 Software Project directory: DE1_SoC_ADC software

 Demo batch file : DE1_SoC_ADC\demo_batch\ DE1_SoC_ADC.bat

 Demonstration Setup and Instructions

 Connect the trimmer to corresponding ADC channel on the 2x5 header as shown in Figure 5-21

to read from, as well as the +5V and GND signals. (Note: the setup shown above is connected

ADC channel 0).

84

 Execute the demo batch file DE1_SoC_ADC.bat to load bit stream and software execution file

in FPGA.

 The NIOS II console will display the voltage of the specified channel voltage result information

Figure 5-21 ADC Reading hardware setup

85

Chapter 6

Examples for HPS

SoC

This chapter provides a number of C-code examples based on the Altera SoC Linux built by Yocto

Project. These examples provide demonstrations of the major features which connected to HPS

interface on the board, such as users LED/KEY, I2C interfaced G-sensor and I2C MUX. All of the

associated files can be found in the Demonstrations/SOC folder in the DE1_SoC System CD.

 Installation of the Demonstrations

To install the demonstrations on your computer:

Copy the directory Demonstrations into a local directory of your choice. Altera SoC EDS v13.0 is

required for users to compile the c-code project.

66..11 HHeelllloo PPrrooggrraamm

This demonstration presents how to develop your first HPS program by using Altera SoC EDS tool.

For operation details, please refer to My_First_HPS.pdf in the system CD.

Here are the major procedures to develop and build HPS project.

 Make sure Altera SoC EDS is installed on your PC.

 Create program .c/.h files with a generic text editor

 Create a "Makefile" with a generic text editor

 Build your project under Altera SoC EDS

 Program File

Here is the main program of this Hello World demo.

86

 Makefile

To compile a project, a Makefile is required. Here is the Makefile used for this demo.

 Compile

To compile a project, please launch Altera SoC EDS Command Shell by executing

C:\altera\13.0\embedded\Embedded_Command_Shell.bat

Use the "cd" command to change the current directory to where the Hello World project is located.

Then type "make" to build the project. The executable file "my_first_hps" will be generated after

the compiling process is finished. The "clean all" command can be used to remove all temporary

files.

87

 Demonstration Source Code

 Build Tool: Altera SoC EDS v13.0

 Project directory: \Demonstration\SoC\my_first_hps

 Binary file: my_first_hps

 Build Command: make ("make clean" to remove all temporary files)

 Execute Command: ./my_first_hps

 Demonstration Setup

 Connect USB cable to the USB-to-UART connector (J4) on the DE1_SoC board and host PC.

 Make sure the demo file "my_first_hps" is copied into the SD card under the "/home/root"

folder in Linux.

 Insert the booting micro SD card into the DE1_SoC board.

 Power on the DE1_SoC board.

 Launch PuTTY to connect to the UART port of Putty and type "root" to login Altera Yocto

Linux.

 In the UART terminal of PuTTY, type "./my_first_hps" to start the program, and you will see

"Hello World!" message in the terminal.

66..22 UUsseerrss LLEEDD aanndd KKEEYY

This demonstration presents how to control the users LED and KEY by accessing the register of

GPIO controller through the memory-mapped device driver. The memory-mapped device driver

allows developer to access the system physical memory.

 Function Block Diagram

Figure 6-1 shows the function block diagram of this demonstration. The users LED and KEY are

88

connected to the GPIO1 controller in HPS. The behavior of the GPIO controller is controlled by the

register in the GPIO controller. The registers can be accessed by application software through the

memory-mapped device driver, which is built into Altera SoC Linux.

Figure 6-1 Block Diagram of GPIO Demonstration

 GPIO Interface Block Diagram

The HPS provides three general-purpose I/O (GPIO) interface modules. Figure 6-2 shows the block

diagram of the GPIO Interface. GPIO[28..0] is controlled by GPIO0 controller and GPIO[57..29] is

controlled by GPIO1 controller. GPIO[70..58] and input-only GPI[13..0] are controlled by GPIO2

controller.

Figure 6-2 Block Diagram of GPIO Interface

89

 GPIO Register Block

The behavior of I/O pin is controlled by the registers in the register block. In this demonstration, we

only use three 32-bit registers in the GPIO controller. The registers are:

 gpio_swporta_dr: used to write output data to output I/O pin

 gpio_swporta_ddr: used to configure the direction of I/O pin

 gpio_ext_porta: used to read input data of I/O input pin

For LED control, we use gpio_swporta_ddr to configure the LED pin as output pin, and drive the

pin high or low by writing data to the gpio_swporta_dr register. For the gpio_swporta_ddr

register, the first bit (least significant bit) controls direction of the first IO pin in the associated

GPIO controller and the second bit controls the direction of second IO pin in the associated GPIO

controller, and so on. The value "1" in the register bit indicates the I/O direction is output, and the

value "0" in the register bit indicates the I/O direction is input.

For the gpio_swporta_dr register, the first bit controls the output value of first I/O pin in the

associated GPIO controller, and the second bit controls the output value of second I/O pin in the

associated GPIO controller, and so on. The value "1" in the register bit indicates the output value is

high, and the value "0" indicates the output value is low.

The status of KEY can be queried by reading the value of gpio_ext_porta register. The first bit

represents the input status of first IO pin in the associated GPIO controller, and the second bit

represents the input status of second IO pin in the associated GPIO controller, and so on. The value

"1" in the register bit indicates the input state is high, and the value "0" indicates the input state is

low.

 GPIO Register Address Mapping

The registers of HPS peripherals are mapped to HPS base address space 0xFC000000 with 64KB

size. Registers of GPIO1 controller are mapped to the base address 0xFF208000 with 4KB size, and

registers of GPIO2 controller are mapped to the base address 0xFF20A000 with 4KB size, as shown

in Figure 6-3.

90

Figure 6-3 GPIO Address Map

 Software API

Developers can use the following software API to access the register of GPIO controller.

 open: use to open memory mapped device driver

 mmap: map physical memory to user space

 alt_read_word: read a value from a specified register

 alt_write_word: write a value into a specified register

 munmap: clean up memory mapping

 close: close device driver.

Developers can also use the following MACRO to access the register

 alt_setbits_word: set specified bit value to zero for a specified register

 alt_clrbits_word: set specified bit value to one for a specified register

To use the above API to access register of GPIO controller, the program must include the following

header files.

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/mman.h>

#include "hwlib.h"

#include "socal/socal.h"

#include "socal/hps.h"

91

#include "socal/alt_gpio.h"

 LED and KEY Control

Figure 6-4 shows the HPS users LED and KEY pin assignment for the DE1_SoC board. The LED

is connected to HPS_GPIO53, KEY is connected to HPS_GPIO54, which are controlled by the

GPIO1 controller, which also controls HPS_GPIO29 ~ HPS_GPIO57.

Figure 6-4 LED and KEY Pin Assignment

Figure 6-5 shows the gpio_swporta_ddr register of the GPIO1 controller. The bit-0 controls the

pin direction of HPS_GPIO29. The bit-24 controls the pin direction of HPS_GPIO53, which

connects to the HPS_LED, the bits-25 controls the pin direction of HPS_GPIO54 which connects to

the HPS_KEY, and so on. In summary, the pin direction of HPS_LED, HPS_KEY are controlled by

the bit-24, bit-25 in the gpio_swporta_ddr register of the GPIO1 controller, respectively. Similarly,

the output status of HPS_LED is controlled by the bit-24 in the gpio_swporta_dr register of the

GPIO1 controller. The status of KEY can be queried by reading the value of the bit-24 in the

gpio_ext_porta register of the GPIO1 controller.

Figure 6-5 gpio_swporta_ddr Register in the GPIO1

92

In this demo code, the following mask is defined to control LED and KEY direction and LED’s

output value.

#define USER_IO_DIR (0x01000000)

#define BIT_LED (0x01000000)

#define BUTTON_MASK (0x02000000)

The following statement can be used to configure the LED associated pins as output pins.

alt_setbits_word((virtual_base +

((uint32_t)(ALT_GPIO1_SWPORTA_DDR_ADDR) &

(uint32_t)(HW_REGS_MASK))), USER_IO_DIR);

The following statement can be used to turn on the LED.

alt_setbits_word((virtual_base +

((uint32_t)(ALT_GPIO1_SWPORTA_DR_ADDR) &

(uint32_t)(HW_REGS_MASK))), BIT_LED);

The following statement can be used to read the content of gpio_ext_porta register. The bit mask is

used to check the status of the key.

alt_read_word((virtual_base +

((uint32_t)(ALT_GPIO1_EXT_PORTA_ADDR) &

(uint32_t)(HW_REGS_MASK))));

.

 Demonstration Source Code

 Build tool: Altera SoC EDS V13.0

 Project directory: \Demonstration\SoC\hps_gpio

 Binary file: hps_gpio

 Build command: make ('make clean' to remove all temporal files)

 Execute command: ./hps_gpio

93

 Demonstration Setup

 Connect the USB cable to the USB-to-UART connector (J4) on the DE1_SoC board and host

PC.

 Make sure the executable file "hps_gpio" is copied into the SD card under the "/home/root"

folder in Linux.

 Insert the booting micro SD card into the DE1_SoC board.

 Power on the DE1_SoC board.

 Launch PuTTY to connect to the UART port of DE1_SoC board and type "root" to login Altera

Yocto Linux.

 In the UART terminal of PuTTY, execute "./hps_gpio" to start the program.

Figure 6-6 Putty window

 HPS_LED will flashing 2 times first.

 Press HPS_KEY to light up HPS_LED ,Press "CTRL + C" to terminate the application.

66..33 II22CC IInntteerrffaacceedd GG--sseennssoorr

This demonstration shows how to control the G-sensor by accessing its registers through the built-in

I2C kernel driver in Altera Soc Yocto Powered Embedded Linux.

 Function Block Diagram

Figure 6-7 shows the function block diagram of this demonstration. The G-sensor on the DE1_SoC

board is connected to the I2C0 controller in HPS. The G-Sensor I2C 7-bit device address is 0x53.

The system I2C bus driver is used to access the register files in the G-sensor. The G-sensor interrupt

signal is connected to the PIO controller. In this demonstration, we use polling method to read the

register data, so the interrupt method is not introduced here.

http://www.altera.com/devices/processor/arm/cortex-a9/software/soc-yocto-embedded-linux.html

94

Figure 6-7 Block Diagram of the G-sensor Demonstration

 I2C Driver

Here is the list of procedures in order to read a register value from G-sensor register files by using

the existing I2C bus driver in the system:

1. Open I2C bus driver "/dev/i2c-0": file = open("/dev/i2c-0", O_RDWR);

2. Specify G-sensor's I2C address 0x53: ioctl(file, I2C_SLAVE, 0x53);

3. Specify desired register index in g-sensor: write(file, &Addr8, sizeof(unsigned char));

4. Read one-byte register value: read(file, &Data8, sizeof(unsigned char));

Because the G-sensor I2C bus is connected to the I2C0 controller, as shown in the Figure 6-8, the

given driver name is '/dev/i2c-0'.

Figure 6-8 Schematic of I2C

To write a value into a register, developer can change step 4 to:

write(file, &Data8, sizeof(unsigned char));

To read multiple byte values, developer can change step 4 to:

read(file, &szData8, sizeof(szData8)); // where szData is an array of bytes

95

To write multiple byte values, developer can change step 4 to:

write(file, &szData8, sizeof(szData8)); // where szData is an array of bytes

 G-sensor Control

The ADI ADXL345 provides I2C and SPI interfaces. I2C interface is used by setting the CS pin to

high on this DE1_SoC board.

The ADI ADXL345 G-sensor provides user-selectable resolution up to 13-bit ± 16g. The

resolution can be configured through the DATA_FORAMT(0x31) register. In the demonstration, we

configure the data format as:

 Full resolution mode

 ± 16g range mode

 Left-justified mode

The X/Y/Z data value can be derived from the DATAX0(0x32), DATAX1(0x33), DATAY0(0x34),

DATAY1(0x35), DATAZ0(0x36), and DATAX1(0x37) registers. The DATAX0 represents the least

significant byte, and DATAX1 represents the most significant byte. It is recommended to perform

multiple-byte read of all registers to prevent change in data between reads of sequential registers.

Developer can use the following statement to read 6 bytes of X, Y, or Z value.

read(file, szData8, sizeof(szData8)); // where szData is an array of six-bytes

 Demonstration Source Code

 Build tool: Altera SoC EDS v13.0

 Project directory: \Demonstration\SoC\hps_gsensor

 Binary file: gsensor

 Build command: make ('make clean' to remove all temporal files)

 Execute command: ./gsensor [loop count]

 Demonstration Setup

 Connect the USB cable to the USB-to-UART connector (J4) on the DE1_SoC board and host

PC.

 Make sure the executable file "gsensor" is copied into the SD card under the "/home/root"

folder in Linux.

 Insert the booting micro sdcard into the DE1_SoC board.

96

 Power on the DE1_SoC board.

 Launch PuTTY to connect to the UART port of DE1_SoC borad and type "root" to login Yocto

Linux.

 In the UART terminal of PuTTY,, execute "./gsensor" to start the gsensor polling.

 The demo program will show the X, Y, and Z values in the Putty, as shown in Figure 6-9. Press

"CTRL + C" to terminate the program.

Figure 6-9 Terminal output of the G-sensor Demonstration

66..44 II22CC MMUUXX TTeesstt

This demonstration shows how to switch the I2C multiplexer so that HPS can access the I2C bus

originally owned by FPGA.

 Function Block Diagram

Figure 6-11 shows the function block diagram of this demonstration. The I2C bus from both FPGA

and HPS are connected to an I2C multiplexer and I2C multiplexer is controlled by

HPS_I2C_CONTROL which connected to GPIO1 controller in HPS. The HPS I2C is connected to

the I2C0 controller in HPS (Gsensor is also connected to I2C0 controller, See Figure 6-10).

Figure 6-11 Block Diagram of the I2C MUX Test Demonstration

97

 HPS_I2C_CONTROL Control

HPS_I2C_CONTROL is connected to HPS_GPIO48, bit 19 of GPIO1 controller. HPS will own

I2C bus and then can access Audio CODEC and TV Decoder when the HPS_I2C_CONTROL

signal is set to high.

In this demo code, the following mask is defined to control HPS_I2C_CONTROL direction and

their output value.

#define HPS_I2C_CONTROL (0x00080000)

The following statement can be used to configure the HPS_I2C_CONTROL associated pins as

output pin.

alt_setbits_word((virtual_base +

((uint32_t)(ALT_GPIO1_SWPORTA_DDR_ADDR) &

(uint32_t)(HW_REGS_MASK))), HPS_I2C_CONTROL);

The following statement can be used to set HPS_I2C_CONTROL high.

 alt_setbits_word((virtual_base +

((uint32_t)(ALT_GPIO1_SWPORTA_DR_ADDR) &

(uint32_t)(HW_REGS_MASK))), HPS_I2C_CONTROL);

The following statement can be used to set HPS_I2C_CONTROL low.

 alt_clrbits_word((virtual_base +

((uint32_t)(ALT_GPIO1_SWPORTA_DR_ADDR) &

(uint32_t)(HW_REGS_MASK))), HPS_I2C_CONTROL);

 I2C Driver

Here is the list of procedures in order to read register value from TV Decoder by using the existing

I2C bus driver in the system:

 Set HPS_I2C_CONTROL high so that HPS can access I2C bus.

 Open I2C bus driver "/dev/i2c-0": file = open("/dev/i2c-0", O_RDWR);

 Specify ADV7180 's I2C address 0x20: ioctl(file, I2C_SLAVE, 0x20);

 Read or write registers;

 Set HPS_I2C_CONTROL low to release I2C bus.

98

 Demonstration Source Code

 Build tool: Altera SoC EDS v13.0

 Project directory: \Demonstration\SoC\ hps_i2c_switch

 Binary file: i2c_switch

 Build command: make ('make clean' to remove all temporal files)

 Execute command: ./ i2c_switch

 Demonstration Setup

 Connect the USB cable to the USB-to-UART connector (J4) on the DE1_SoC board and host

PC.

 Make sure the executable file " i2c_switch " is copied into the SD card under the "/home/root"

folder in Linux.

 Insert the booting micro sdcard into the DE1_SoC board.

 Power on the DE1_SoC board.

 Launch PuTTY to connect to the UART port of DE1_SoC borad and type "root" to login Yocto

Linux.

 In the UART terminal of PuTTY,, execute "./ i2c_switch " to start the I2C MUX test.

 The demo program will show the result in the Putty, as shown in Figure 6-12.

Figure 6-12 Terminal output of the I2C MUX Test Demonstration

 Press "CTRL + C" to terminate the program.

99

Chapter 7

Examples for using

both HPS SoC and

FGPA

Although the HPS and the FPGA can operate independently, they are tightly coupled via a

high-bandwidth system interconnect built from high-performance ARM AMBA® AXITM bus

bridges. Both FPGA fabric and HPS can access to each other via these interconnect bridges. This

chapter provides demonstrations for how to using these bridges that can achieve superior

performance and lower latency when compared to solutions containing a separate FPGA and

discrete processor.

77..11 HHPPSS CCoonnttrrooll LLEEDD aanndd HHEEXX

This demonstration presents using HPS to control the LED and HEX on the FPGA part through

Lightweight HPS-to-FPGA Bridge.

 Function Block Diagram

Figure 7-1 shows the diagram of this demonstration. The HPS use Lightweight HPS-to-FPGA AXI

Bridge to communicate with FPGA. The HPS translate data to the FPGA through the lwaxi bridge.

The hardware in FPGA part is built in Qsys. The data translate through Lightweight HPS-to-FPGA

Bridge is converted into Avalon-MM master interface. So the IP PIO controller and HEX Controller

works as the Avalon-MM slave in the system. They control the pins related to the LED and HEX to

change the LED and HEX’s state. This is similar to the system using NIOS II processor to control

LED and HEX.

100

Figure 7-1 HPS Control FPGA LED and HEX

 LED and HEX control

The Lightweight HPS-to-FPGA Bridge is a peripheral of the HPS. The software running on linux

operation system can’t access the physical address of the HPS peripheral. You must map the

physical address to the user space at first then you can access to the peripheral or you can write a

device driver module and add it to the kernel. We only show the first method to the users in this

demonstration. We actually map in the entire CSR span of the HPS since we want to access various

registers within that span. If the users want to access any other peripherals whose physical address

is in this span, they can reuse the mapping function and the macro we defined below.

The lwaxi bridge start address after being mapped can be get using the ALT_LWFPGASLVS_OFST

which is defined in altera_hps hardware library. Then the slave IP connected to the lwaxi bridge can

be accessed through the base address and the register offset in these IPs. For instance, the base

address of the PIO slave IP in this system is 0x0001_0040 and the direction control register offset is

0x01, the data register offset is 0x00. The following statement can be used to get the base address of

PIO slave IP.

h2p_lw_led_addr=virtual_base+((unsigned long)(ALT_LWFPGASLVS_OFST

+ LED_PIO_BASE) & (unsigned long)(HW_REGS_MASK));

In this demonstration, we just need to set the PIO’s direction as output which is the default direction

of the PIO IP, so we can skip this step. The following statement is used to set the output state of the

PIO.

101

alt_write_word(h2p_lw_led_addr, Mask);

The Mask in this statement decides which bit in the data register of the PIO IP is high or low. The

bits in data register decide the output state of the pins connected to the LEDs. The program for the

HEX controlling is similar to the LED.

Since the linux operate system support mult-thread software. The software for this system creates

two threads one for controlling the LED and the other for controlling the HEX. We can use the

system call pthread_create to complete the job. The function is called in the main function and a

sub-thread is created. The program running in the sub-thread is to control the led flashing in a loop.

And the main-thread in the main function is to control the digital shown on the HEX changing in a

loop. The LED and HEX’s state changing at the same time when the FPGA is configured and the

software is running on HPS.

 Demonstration Source Code

 Build tool: Altera SoC EDS V13.0

 Project directory: \Demonstration\ SoC_FPGA\HPS_LED_HEX

 Quick file directory:\ Demonstration\ SoC_FPGA\HPS_LED_HEX\ quickfile

 Batch File: \ Demonstration\ SoC_FPGA\HPS_LED_HEX\ quickfile \sof_dwonload\test.bat,

 FPGA Configure File : HPS_LED_HEX.sof

 Binary file: HPS_LED_HEX

 Build app command: make ('make clean' to remove all temporal files)

 Execute app command: ./ HPS_LED_HEX

DDeemmoonnssttrraattiioonn SSeettuupp

 Make sure Quartus II and Nios II are installed on your PC.

 Connect the USB blaster cable to the USB blaster connector (J13) on the DE1_SOC board and

host PC install USB Blaster driver II if necessary.

 Connect the USB cable to the USB-to-UART connector (J4) on the DE1_SOC board and host

PC.

 Make sure the executable file " HPS_LED_HEX " is copied into the SD card under the

"/home/root" folder in Linux.

 Insert the booting micro SD card into the DE1_SOC board.

 Power on the DE1_SOC board.

 Launch PuTTY to connect to the UART port of SoCKit board and type "root" to login Altera

Yocto Linux.

 Execute the demo batch file “test.bat” under the \ quickfile \sof_dwonload

102

 In the UART terminal of PuTTY, execute "./HPS_LED_HEX " to start the program.

 The putty will show the message as shown in Figure 7-2, and the LED[9:0] will flash , the

number on the HEX[5:0] will change at the same time. Press "CTRL + C" to terminate the

program.

 Figure 7-2 Running result in putty

103

Chapter 8

Steps of

Programming the

Quad Serial

Configuration Device

This chapter describes how to program the quad serial configuration device with Serial Flash

Loader (SFL) function via the JTAG interface. User can program quad serial configuration devices

with a JTAG indirect configuration (.jic) file. To generate JIC programming files with the Quartus II

software, users need to generate a user-specified SRAM object file (.sof), which is the input file

first. Next, users need to convert the SOF to a JIC file. To convert a SOF to a JIC file in Quartus II

software, follow these steps:

88..11 BBeeffoorree yyoouu BBeeggiinn

To use the Quad serial flash as a FPGA configuration device, please make sure the FPGA should be

set in Asx4 mode. (i. e. , let MSEL[4..0] to be set as “10010”)

88..22 CCoonnvveerrtt.. SSOOFF FFiillee ttoo ..JJIICC ffiillee

Choose Convert Programming Files on Quartus window (File menu). See Figure 8-1

104

Figure 8-1 File menu of Quartus

In the Convert Programming Files dialog box, scroll to the JTAG Indirect Configuration File (.jic)

from the Programming file type field.

In the Configuration device field, choose EPCQ256.

In the Mode field, choose Active Serial X4.

In the File name field, browse to the target directory and specify an output file name.

Highlight the SOF data in the Input files to convert section. See Figure 8-2.

105

Figure 8-2 Convert Programming Files Dialog Box

Click Add File.

Select the SOF that you want to convert to a JIC file.

Click Open.

Highlight the Flash Loader and click Add Device. See Figure 8-3.

Click OK. The Select Devices page displays.

106

Figure 8-3 Highlight Flash Loader

Select the targeted FPGA that you are using to program the serial configuration device. See Figure

8-4.

Click OK. The Convert Programming Files page displays. See Figure 8-5.

Click Generate.

107

Figure 8-4 Select Devices Page

108

Figure 8-5 Convert Programming Files Page

88..33 WWrriittee JJIICC FFiillee iinnttoo QQuuaadd SSeerriiaall CCoonnffiigguurraattiioonn DDeevviiccee

To program the serial configuration device with the JIC file that you just created, add the file to the

Quartus II Programmer window and follow the steps:

When the SOF-to-JIC file conversion is complete, add the JIC file to the Quartus II Programmer

window:

Choose Programmer (Tools menu), and the Chain.cdf window appears.

Click Auto Detect, and then select correct device, both FPGA device and HPS will detected. (See

Figure 8-6)

Double click the green rectangle region as shown in Figure 8-6, the Select New Programming File

109

page will appear, and then select the correct JIC file.

Program the serial configuration device by clicking the corresponding Program/Configure box, a

factory default SFL image will be loaded (See Figure 8-7).

Click Start to program serial configuration device.

Figure 8-6 Quartus II programmer window with two detected devices

110

Figure 8-7 Quartus II programmer window with one JIC file

88..44 EErraassee tthhee QQuuaadd SSeerriiaall CCoonnffiigguurraattiioonn DDeevviiccee

To erase the existed file in the serial configuration device, follow the steps listed below:

Choose Programmer (Tools menu), and the Chain.cdf window appears.

Click Auto Detect, and then select correct device, both FPGA device and HPS will detected. (See

Figure 8-6)

Double click the green rectangle region as shown in Figure 8-6, the Select New Programming File

page will appear, and then select the correct JIC file.

Erase the serial configuration device by clicking the corresponding Erase box, a Factory default

111

SFL image will be load (See Figure 8-8).

Figure 8-8 Erasing setting in Quartus II programmer window

Click Start to erase the serial configuration device.

