

1

2

CONTENTS

Chapter 1 Overview ... 4
1.1 General Description... 4
1.2 Key Features ... 5
1.3 Block Diagram ... 6

Chapter 2 Board Components ... 9
2.1 Board Overview ... 9
2.2 Configuration, Status and Setup .. 10
2.3 General User Input/Output .. 13
2.4 Temperature Sensor and Fan Control .. 15
2.5 Power Monitor ... 17
2.6 Clock Circuit .. 18
2.7 FLASH Memory ... 21
2.8 QDRII+ SRAM ... 24
2.9 QSPF+ Ports ... 37
2.10 PCI Express .. 40
2.11 2x5 Timing Header .. 44
2.12 2x4 GPIO Expansion Header .. 45

Chapter 3 System Builder ... 47
3.1 Introduction ... 47
3.2 General Design Flow ... 48
3.3 Using System Builder .. 49

Chapter 4 Flash Programming ... 55
4.1 FPGA Configure Operation ... 55
4.2 CFI Flash Memory Map .. 56
4.3 Flash Example Designs .. 58
4.4 Flash_Programming Example .. 59
4.5 Flash_Factory Example .. 60
4.6 Flash_User Example .. 61
4.7 Flash_Tool Example ... 62
4.8 Programming Batch File ... 63
4.9 Restore Factory Settings .. 64

Chapter 5 Peripheral Reference Design .. 65
5.1 Board Protection ... 65
5.2 Configure Si5340A/B in RTL ... 68
5.3 Nios II control for SI5340/Temperature/Power 76
5.4 Fan Speed Control .. 81

Chapter 6 Memory Reference Design .. 84
6.1 QDRII+ SRAM Test ... 84
6.2 QDRII+ SRAM Test by Nios II .. 87

Chapter 7 PCI Express Reference Design .. 91
7.1 PCI Express System Infrastructure .. 91
7.2 PC PCI Express Software SDK ... 92
7.3 PCI Express Software Stack ... 93
7.4 PCIe Design - Fundamental .. 101
7.5 PCIe Design – QDRII+ .. 109
7.6 PCIe Design: PCIe_Fundamental_x2 .. 122

Chapter 8 Transceiver Verification .. 130

3

8.1 Function of the Transceiver Test Code .. 130
8.2 Loopback Fixture ... 130
8.3 Testing ... 132

 Additional Information .. 133
Getting Help .. 134

4

Chapter 1

Overview

his chapter provides an overview of the TR10a-HL2 Development Board and

installation guide.

1.1 General Description

The Terasic TR10a-HL2 Arria 10 GX FPGA Development Kit provides the ideal

hardware solution for designs that demand high capacity and bandwidth memory

interfacing, ultra-low latency communication, and power efficiency. With a full-height,

half length form-factor package, the TR10a-HL2 is designed for the most demanding

high-end applications, empowered with the top-of-the-line Altera Arria 10 GX,

delivering the best system-level integration and flexibility in the industry.

The Arria® 10 GX FPGA features integrated transceivers that transfer at a maximum of

12.5 Gbps, allowing the TR10a-HL2 to be fully compliant with version 3.0 of the PCI

Express standard, as well as allowing an ultra low-latency, straight connections to four

external 40G QSFP+ modules. Not relying on an external PHY will accelerate

mainstream development of network applications enabling customers to deploy

designs for a broad range of high-speed connectivity applications. For designs that

demand high capacity and high speed for memory and storage, the TR10a-HL2

delivers with six independent banks of QDRII+ SRAM, high-speed parallel flash

memory. The feature-set of the TR10a-HL2 fully supports all high-intensity applications

such as low-latency trading, cloud computing, high-performance computing, data

acquisition, network processing, and signal processing.

T

5

1.2 Key Features

The following hardware is implemented on the TR10a-HL2 board:

 FPGA

 Altera Arria® 10 GX FPGA (10AX115N2F45E1SG)

 FPGA Configuration

 On-Board USB Blaster II or JTAG header for FPGA programming

 Fast passive parallel (FPPx16) configuration via MAX II CPLD and flash memory

 General user input/output:

 8 LEDs

 4 push-buttons

 2 dip switches

 Clock System

 50MHz Oscillator

 Programmable clock generators Si5340A and Si5340B

 Memory

 QDRII+ SRAM

 FLASH

 Communication Ports

 Four QSFP+ connectors

 Dual PCI Express (PCIe) x8 edge connector

 One 2x5 GPIO timing expansion header

 System Monitor and Control

 Temperature sensor

 Fan control

 Power monitor

 Power

 PCI Express 6-pin power connector, 12V DC Input

 PCI Express edge connector power

6

 Mechanical Specification

 PCI Express full-height and 1/2-length

1.3 Block Diagram

Figure 1-1 shows the block diagram of the TR10a-HL2 board. To provide maximum

flexibility for the users, all key components are connected to the Arria 10 GX FPGA

device. Thus, users can configure the FPGA to implement any system design.

Figure 1-1 Block diagram of the TR10a-HL2 board

Below is more detailed information regarding the blocks in Figure 1-1.

 Arria 10 GX FPGA

 10AX115N2F45E1SG

7

 1,150K logic elements (LEs)

 67-Mbits embedded memory

 48 transceivers (12.5Gbps)

 3,036 18-bit x 19-bit multipliers

 1,518 Variable-precision DSP blocks

 4 PCI Express hard IP blocks

 768 user I/Os

 384 LVDS channels

 32 phase locked loops (PLLs)

 FPGA Configuration

 On-board USB Blaster II for use with the Quartus II Programmer

 MAXII CPLD 5M2210 System Controller and Fast Passive Parallel (FPP x16)

configuration

 Memory devices

 48MB QDRII+ SRAM

 128MB FLASH

 General user I/O

 8 user controllable LEDs

 4 user push buttons

 2 user dip switches

 On-Board Clock

 50MHz oscillator

 Programming PLL providing clock for 40G QSFP+ transceiver

 Programming PLL providing clock for PCIe transceiver

 Programming PLL providing clocks for QDRII+ SRAM

 Four QSFP+ ports

8

 Four QSFP+ connector (40 Gbps+)

 Dual PCI Express x8 edge connector

 Support for Dual PCIe x8 Gen1/2/3

 Edge connector for PC motherboard with x16 PCI Express slot

 Power Source

 PCI Express 6-pin DC 12V power

 PCI Express edge connector power

9

Chapter 2

Board Components

his chapter introduces all the important components on the TR10a-HL2.

2.1 Board Overview

Figure 2-1 is the top and bottom view of the TR10a-HL2 development board. It depicts

the layout of the board and indicates the location of the connectors and key

components. Users can refer to this figure for relative location of the connectors and

key components.

Figure 2-1 FPGA Board (Top)

T

10

Figure 2-2 FPGA Board (Bottom)

2.2 Configuration, Status and Setup

 Configure

The FPGA board supports two configuration methods for the Arria 10 FPGA:

 Configure the FPGA using the on-board USB-Blaster II.

 Flash memory configuration of the FPGA using stored images from the flash

memory on power-up.

For programming by on-board USB-Blaster II, the following procedures show how to

download a configuration bit stream into the Arria 10 GX FPGA:

 Make sure that power is provided to the FPGA board

 Connect your PC to the FPGA board using a micro-USB cable and make

sure the USB-Blaster II driver is installed on PC.

 Launch Quartus II programmer and make sure the USB-Blaster II is

detected.

 In Quartus II Programmer, add the configuration bit stream file (.sof), check

the associated “Program/Configure” item, and click “Start” to start FPGA

programming.

11

 Status LED

The FPGA Board development board includes board-specific status LEDs to indicate

board status. Please refer to Table 2-1 for the description of the LED indicator.

Table 2-1 Status LED

Board

Reference
LED Name Description

D2 12-V Power Illuminates when 12-V power is active.

D3 3.3-V Power Illuminates when 3.3-V power is active.

D7 CONF DONE

Illuminates when the FPGA is successfully

configured. Driven by the MAX II CPLD 5M2210

System Controller.

D10 Loading

Illuminates when the MAX II CPLD 5M2210 System

Controller is actively configuring the FPGA. Driven

by the MAX II CPLD 5M2210 System Controller with

the Embedded Blaster CPLD.

D8 Error

Illuminates when the MAX II CPLD EPM2210

System Controller fails to configure the FPGA.

Driven by the MAX II CPLD EPM2210 System

Controller.

D9 PAGE
Illuminates when FPGA is configured by the factory

configuration bit stream.

 Setup PCI Express Control DIP switch

The PCI Express Control DIP switch (SW2) is provided to enable or disable different

configurations of the PCIe Connector. Table 2-2 lists the switch controls and

description.

Table 2-2SW2 PCIe Control DIP Switch

Board

Reference
Signal Name Description Default

SW2.1 PCIE_PRSNT2n_x1
On : Enable x1 presence detect

Off: Disable x1 presence detect
Off

SW2.2 PCIE_PRSNT2n_x4
On : Enable x4 presence detect

Off: Disable x4 presence detect
Off

SW2.3 PCIE_PRSNT2n_x8 On : Enable x8 presence detect On

12

Off: Disable x8 presence detect

 Setup Configure Mode

The position 1~3 of DIP switch SW1 are used to specify the configuration mode of the

FPGA. As currently only one mode is supported, please set all positions as shown in

Figure 2-3.

Figure 2-3 Position of DIP switch SW1 for Configure Mode

 Select Flash Image for Configuration

The position 4 of DIP switch SW1 is used to specify the image for configuration of the

FPGA. Setting Position 4 of SW1 to “1” (down position) specifies the default factory

image to be loaded, as shown in Figure 2-4. Setting Position 4 of SW1 to “0” (up

position) specifies the TR10a-HL2 to load a user-defined image, as shown in Figure

2-5.

13

Figure 2-4 Position of DIP switch SW1 for Image Select – Factory Image Load

Figure 2-5 Position of DIP switch SW1 for Image Select – User Image Load

2.3 General User Input/Output

This section describes the user I/O interface to the FPGA.

 User Defined Push-buttons

The FPGA board includes four user defined push-buttons that allow users to interact

14

with the Arria 10 GX device. Each push-button provides a high logic level or a low logic

level when it is not pressed or pressed, respectively. Table 2-3 lists the board

references, signal names and their corresponding Arria 10 GX device pin numbers.

Table 2-3 Push-button Pin Assignments, Schematic Signal Names, and

Functions

Board

Reference

Schematic

Signal

Name

Description
I/O

Standard

Arria 10 GX

Pin Number

PB0 BUTTON0

High Logic Level when the button

is not pressed

1.8-V PIN_AC11

PB1 BUTTON1 1.8-V PIN_AC12

PB2 BUTTON2 1.8-V PIN_BA10

PB3 BUTTON3 1.8-V PIN_AP8

 User-Defined Dip Switch

There are two dip switches on the FPGA board to provide additional FPGA input

control. When a dip switch is in the DOWN position or the UPPER position, it provides

a high logic level or a low logic level to the Arria 10 GX FPGA, respectively, as shown in

Figure 2-6.

Figure 2-6 2 Dip switches

Table 2-4 lists the signal names and their corresponding Arria 10 GX device pin

15

numbers.

Table 2-4 Dip Switch Pin Assignments, Schematic Signal Names, and Functions

Board

Reference

Schematic

Signal Name
Description

I/O

Standard

Arria 10 GX

Pin Number

SW0 SW0 High logic level when SW in the

UPPER position.

1.8-V PIN_ BD28

SW1 SW1 1.8-V PIN_AM27

 User-Defined LEDs

The FPGA board consists of 8 user-controllable LEDs to allow status and debugging

signals to be driven to the LEDs from the designs loaded into the Arria 10 GX device.

Each LED is driven directly by the Arria 10 GX FPGA. The LED is turned on or off when

the associated pins are driven to a low or high logic level, respectively. A list of the pin

names on the FPGA that are connected to the LEDs is given in Table 2-5.

Table 2-5 User LEDs Pin Assignments, Schematic Signal Names, and Functions

Board

Reference

Schematic

Signal Name
Description

I/O

Standard

Arria 10 GX Pin

Number

LED0 LED0

Driving a logic 0 on the I/O

port turns the LED ON.

Driving a logic 1 on the I/O

port turns the LED OFF.

1.8-V PIN_T11

LED1 LED1 1.8-V PIN_R11

LED2 LED2 1.8-V PIN_N15

LED3 LED3 1.8-V PIN_M15

D6-1 LED_BRACKET0 1.8-V PIN_BB32

D6-3 LED_BRACKET1 1.8-V PIN_AW30

D6-5 LED_BRACKET2 1.8-V PIN_AV30

D6-7 LED_BRACKET3 1.8-V PIN_AM30

2.4 Temperature Sensor and Fan Control

The FPGA board is equipped with a temperature sensor, TMP441, which provides

temperature sensing. These functions are accomplished by connecting the

temperature sensor to the internal temperature sensing diode of the Arria 10 GX device.

The temperature status and holding configuration information registers of the

temperature sensor can be programmed by a two-wire SMBus, which is connected to

16

the Arria 10 GX FPGA. In addition, the 7-bit POR slave address for this sensor is set to

‘0011100b’.Figure 2-7 shows the connection between the temperature sensor and the

Arria 10 GX FPGA.

Figure 2-7 Connections between the temperature sensor and the Arria 10 GX

FPGA

An optional 3-pin +12V fan located on J15 of the FPGA board is intended to reduce the

temperature of the FPGA. The board is equipped with a Fan-Speed regulator and

monitor, MAX6650, through an I2C interface, Users regulate and monitor the speed of

fan depending on the measured system temperature. Figure 2-8 shows the connection

between the Fan-Speed Regulator and Monitor and the Arria 10 GX FPGA.

Figure 2-8 Connections between the Fan-Speed Regulator/ Monitor and the Arria

10 GX FPGA

The pin assignments for the associated interface are listed in 109H109HTable 2-6.

17

Table 2-6 Temperature Sensor and Fan Speed Control Pin Assignments,

Schematic Signal Names, and Functions

Schematic

Signal Name
Description I/O Standard

Arria 10 GX Pin

Number

TEMPDIODEp
Positive pin of temperature

diode in Arria 10
- PIN_N21

TEMPDIODEn
Negative pin of temperature

diode in Arria 10
- PIN_P21

TEMP_I2C_SCL SMBus clock 1.8-V PIN_AU12

TEMP_I2C_SDA SMBus data 1.8-V PIN_AV12

FAN_I2C_SCL 2-Wire Serial Clock 1.8-V PIN_AJ33

FAN_I2C_SDA 2-Wire Serial-Data 1.8-V PIN_AK33

FAN_ALERT_n
Active-low AL

ERT input
1.8-V PIN_AL32

2.5 Power Monitor

The TR10a-HL2 has implemented a power monitor chip to monitor the board input

power voltage and current. Figure 2-9 shows the connection between the power

monitor chip and the Arria 10 GX FPGA. The power monitor chip monitors both shunt

voltage drops and board input power voltage allows user to monitor the total board

power consumption. Programmable calibration value, conversion times, and averaging,

combined with an internal multiplier, enable direct readouts of current in amperes and

power in watts. Table 2-7 shows the pin assignment of power monitor I2C bus.

18

Figure 2-9 Connections between the Power Monitor chip and the Arria 10 GX

FPGA

Table 2-7 Pin Assignment of Power Monitor I2C bus

Schematic

Signal Name
Description

I/O

Standard

Arria 10 GX

Pin Number

POWER_MONITOR_I2C_SCL Power Monitor SCL 1.8V PIN_AT26

POWER_MONITOR_I2C_SDA Power Monitor SDA 1.8V PIN_AP25

POWER_MONITOR_ALERT_N Power Monitor ALERT 1.8V PIN_BD23

2.6 Clock Circuit

The development board includes four 50 MHz oscillators and two programmable clock

generators. Figure 2-10 shows the default frequencies of on-board all external clocks

going to the Arria 10 GX FPGA.

Figure 2-10 Clock circuit of the FPGA Board

A clock buffer is used to duplicate the 50 MHz oscillator, so there are six 50MHz clocks

fed into different five FPGA banks. The two programming clock generators are low-jitter

oscillators which are used to provide special and high quality clock signals for

high-speed transceivers and high bandwidth memory. Through I2C serial interface, the

clock generator controllers in the Arria 10 GX FPGA can be used to program the

19

Si5340A and Si5340B to generate 40G Ethernet QSFP+ and high bandwidth memory

reference clocks respectively.

Table 2-8 lists the clock source, signal names, default frequency and their

corresponding Arria 10 GX device pin numbers.

20

Table 2-8 Clock Source, Signal Name, Default Frequency, Pin Assignments and

Functions

Source
Schematic

Signal Name

Default

Frequency

I/O

Standard

Arria 10 GX

Pin Number
Application

Y8 CLK_50_B2H

50.0 MHz

1.8V PIN_AP34

Y9 CLK_50_B2G 1.8V PIN_AW35

Y10 CLK_50_B2F 1.8V PIN_AY31

Y1

CLK_50_B3D 1.8V PIN_AN7

CLK_50_B3F 1.8V PIN_G12

CLK_50_B3H 1.8V PIN_D21

Y5 CLK_100_B3D 100.0MHz 1.8V PIN_AJ11

Y7 OSC_100_CLKUSR 100.0MHz 1.8V PIN_AV26

User-supplied

configuration

clock

U3

QSFPA_REFCLK_p
644.53125

MHz
LVDS PIN_AH5

40G QSFP+ A

port

QSFPB_REFCLK_p
644.53125

MHz
LVDS PIN_AD5

40G QSFP+ B

port

QSFPC_REFCLK_p
644.53125

MHz
LVDS PIN_Y5

40G QSFP+ C

port

QSFPD_REFCLK_p
644.53125

MHz
LVDS PIN_T5

40G QSFP+ D

port

U20

QDRIIA_REFCLK_p 275 MHz LVDS PIN_L9
QDRII+ reference

clock for A port

QDRIIB_REFCLK_p 275 MHz LVDS PIN_N18
QDRII+ reference

clock for B port

QDRIIC_REFCLK_p 275 MHz LVDS PIN_G24
QDRII+ reference

clock for C port

QDRIID_REFCLK_p 275 MHz LVDS PIN_M34
QDRII+ reference

clock for D port

QDRIIE_REFCLK_p 275 MHz LVDS PIN_AP14
QDRII+ reference

clock for E port

QDRIIF_REFCLK_p 275 MHz LVDS PIN_AT7
QDRII+ reference

clock for F port

Table 2-9 lists the programmable oscillator control pins, signal names, I/O standard

and their corresponding Arria 10 GX device pin numbers.

21

Table 2-9 Programmable oscillator control pin, Signal Name, I/O standard, Pin

Assignments and Descriptions

Programmable

Oscillator

Schematic

Signal Name

I/O

Standard

Arria 10 GX

Pin Number
Description

Si5340A

(U3)

Si5340A_I2C_SCL 1.8-V PIN_AU27 I2C bus, connected

with Si5340A Si5340A_I2C_SDA 1.8-V PIN_AT27

Si5340A_RST 1.8-V PIN_AW28 Si5340A reset signal

Si5340A_INTR 1.8-V PIN_AW29
Si5340A interrupt

signal

Si5340A_OE_n 1.8-V PIN_AV28
Si5340A output

enable signal

Si5340B

(U20)

Si5340B_I2C_SCL 1.8-V PIN_G37 I2C bus, connected

with Si5340B Si5340B_I2C_SDA 1.8-V PIN_H31

Si5340B_RST 1.8-V PIN_G38 Si5340B reset signal

Si5340B_INTR 1.8-V PIN_G32
Si5340B interrupt

signal

Si5340B_OE_n 1.8-V PIN_AL31
Si5340B output

enable signal

2.7 FLASH Memory

The development board has one 1Gb CFI-compatible synchronous flash device for

non-volatile storage of FPGA configuration data, user application data, and user code

space.

Each interface has a 16-bit data bus and the device combined allow for FPP x16

configuration. This device is part of the shared flash and MAX (FM) bus, which

connects to the flash memory and MAX V CPLD (5M2210) System Controller. Figure

2-11 shows the connections between the Flash, MAX and Arria 10 GX FPGA.

22

Figure 2-11 Connection between the Flash, Max and Arria 10 GX FPGA

Table 2-10 lists the flash pin assignments, signal names, and functions.

Table 2-10 Flash Memory Pin Assignments, Schematic Signal Names, and

Functions

Schematic

Signal Name
Description I/O Standard

Arria 10 GX Pin

Number

FLASH_A1 Address bus 1.8-V PIN_H26

FLASH_A2 Address bus 1.8-V PIN_T12

FLASH_A3 Address bus 1.8-V PIN_U12

FLASH_A4 Address bus 1.8-V PIN_U10

FLASH_A5 Address bus 1.8-V PIN_A15

FLASH_A6 Address bus 1.8-V PIN_H6

FLASH_A7 Address bus 1.8-V PIN_B18

FLASH_A8 Address bus 1.8-V PIN_P15

FLASH_A9 Address bus 1.8-V PIN_H7

FLASH_A10 Address bus 1.8-V PIN_A17

FLASH_A11 Address bus 1.8-V PIN_A16

FLASH_A12 Address bus 1.8-V PNI_C16

FLASH_A13 Address bus 1.8-V PIN_K11

FLASH_A14 Address bus 1.8-V PIN_H8

FLASH_A15 Address bus 1.8-V PIN_F6

FLASH_A16 Address bus 1.8-V PIN_C17

FLASH_A17 Address bus 1.8-V PIN_G8

23

FLASH_A18 Address bus 1.8-V PIN_J10

FLASH_A19 Address bus 1.8-V PIN_L36

FLASH_A20 Address bus 1.8-V PIN_G7

FLASH_A21 Address bus 1.8-V PIN_G9

FLASH_A22 Address bus 1.8-V PIN_J18

FLASH_A23 Address bus 1.8-V PIN_A14

FLASH_A24 Address bus 1.8-V PIN_B15

FLASH_A25 Address bus 1.8-V PIN_J11

FLASH_A26 Address bus 1.8-V PIN_H10

FLASH_D0 Address bus 1.8-V PIN_Y31

FLASH_D1 Data bus 1.8-V PIN_E24

FLASH_D2 Data bus 1.8-V PIN_H35

FLASH_D3 Data bus 1.8-V PIN_J39

FLASH_D4 Data bus 1.8-V PIN_H38

FLASH_D5 Data bus 1.8-V PIN_C33

FLASH_D6 Data bus 1.8-V PIN_C32

FLASH_D7 Data bus 1.8-V PIN_C26

FLASH_D8 Data bus 1.8-V PIN_B24

FLASH_D9 Data bus 1.8-V PIN_AA31

FLASH_D10 Data bus 1.8-V PIN_J33

FLASH_D11 Data bus 1.8-V PIN_C36

FLASH_D12 Data bus 1.8-V PIN_C35

FLASH_D13 Data bus 1.8-V PIN_C25

FLASH_D14 Data bus 1.8-V PIN_H37

FLASH_D15 Data bus 1.8-V PIN_J38

FLASH_CLK Clock 1.8-V PIN_T9

FLASH_RESET_n Reset 1.8-V PIN_B14

FLASH_CE_n Chip enable of

flash

1.8-V PIN_J8

FLASH_OE_n Output enable 1.8-V PIN_E18

FLASH_WE_n Write enable 1.8-V PIN_B17

FLASH_ADV_n Address valid 1.8-V PIN_F7

FLASH_RDY_BSY_

n

Ready of flash 1.8-V PIN_D18

24

2.8 QDRII+ SRAM

The development board supports six independent QDRII+ SRAM memory devices for

very-high speed and low-latency memory access. Each of QDRII+ has a x18 interface,

providing addressing to a device of up to a 8MB (not including parity bits). The QDRII+

has separate read and write data ports with DDR signaling at up to 550 MHz.

Table 2-11, Table 2-12,Table 2-13, Table 2-14, Table 2-15 and Table 2-16 lists the

QDRII+ SRAM Bank A, B, C and D pin assignments, signal names relative to the Arria

10 GX device, in respectively.

Table 2-11 QDRII+ SRAM A Pin Assignments, Schematic Signal Names, and

Functions

Schematic

Signal Name
Description I/O Standard

Arria 10 GX Pin

Number

QDRIIA_A0 Address bus[0] 1.8-V HSTL Class I PIN_V12

QDRIIA_A1 Address bus[1] 1.8-V HSTL Class I PIN_V13

QDRIIA_A2 Address bus[2] 1.8-V HSTL Class I PIN_N10

QDRIIA_A3 Address bus[3] 1.8-V HSTL Class I PIN_M10

QDRIIA_A4 Address bus[4] 1.8-V HSTL Class I PIN_P11

QDRIIA_A5 Address bus[5] 1.8-V HSTL Class I PIN_N11

QDRIIA_A6 Address bus[6] 1.8-V HSTL Class I PIN_M9

QDRIIA_A7 Address bus[7] 1.8-V HSTL Class I PIN_M8

QDRIIA_A8 Address bus[8] 1.8-V HSTL Class I PIN_N7

QDRIIA_A9 Address bus[9] 1.8-V HSTL Class I PIN_N8

QDRIIA_A10 Address bus[10] 1.8-V HSTL Class I PIN_P10

QDRIIA_A11 Address bus[11] 1.8-V HSTL Class I PIN_P9

QDRIIA_A12 Address bus[12] 1.8-V HSTL Class I PIN_N6

QDRIIA_A13 Address bus[13] 1.8-V HSTL Class I PIN_M7

QDRIIA_A14 Address bus[14] 1.8-V HSTL Class I PIN_L10

QDRIIA_A15 Address bus[15] 1.8-V HSTL Class I PIN_L7

QDRIIA_A16 Address bus[16] 1.8-V HSTL Class I PIN_K7

QDRIIA_A17 Address bus[17] 1.8-V HSTL Class I PIN_K8

QDRIIA_A18 Address bus[18] 1.8-V HSTL Class I PIN_J9

QDRIIA_A19 Address bus[19] 1.8-V HSTL Class I PIN_L6

QDRIIA_A20 Address bus[20] 1.8-V HSTL Class I PIN_K6

25

QDRIIA_A21 Address bus[21] 1.8-V HSTL Class I PIN_J6

QDRIIA_D0 Write data bus[0] 1.8-V HSTL Class I PIN_D13

QDRIIA_D1 Write data bus[1] 1.8-V HSTL Class I PIN_C10

QDRIIA_D2 Write data bus[2] 1.8-V HSTL Class I PIN_B10

QDRIIA_D3 Write data bus[3] 1.8-V HSTL Class I PIN_A10

QDRIIA_D4 Write data bus[4] 1.8-V HSTL Class I PIN_C11

QDRIIA_D5 Write data bus[5] 1.8-V HSTL Class I PIN_C12

QDRIIA_D6 Write data bus[6] 1.8-V HSTL Class I PIN_A11

QDRIIA_D7 Write data bus[7] 1.8-V HSTL Class I PIN_B12

QDRIIA_D8 Write data bus[8] 1.8-V HSTL Class I PIN_A12

QDRIIA_D9 Write data bus[9] 1.8-V HSTL Class I PIN_D11

QDRIIA_D10 Write data bus[10] 1.8-V HSTL Class I PIN_D10

QDRIIA_D11 Write data bus[11] 1.8-V HSTL Class I PIN_C8

QDRIIA_D12 Write data bus[12] 1.8-V HSTL Class I PIN_D9

QDRIIA_D13 Write data bus[13] 1.8-V HSTL Class I PIN_D8

QDRIIA_D14 Write data bus[14] 1.8-V HSTL Class I PIN_E13

QDRIIA_D15 Write data bus[15] 1.8-V HSTL Class I PIN_E9

QDRIIA_D16 Write data bus[16] 1.8-V HSTL Class I PIN_E11

QDRIIA_D17 Write data bus[17] 1.8-V HSTL Class I PIN_E8

QDRIIA_Q0 Read Data bus[0] 1.8-V HSTL Class I PIN_P13

QDRIIA_Q1 Read Data bus[1] 1.8-V HSTL Class I PIN_R13

QDRIIA_Q2 Read Data bus[2] 1.8-V HSTL Class I PIN_N13

QDRIIA_Q3 Read Data bus[3] 1.8-V HSTL Class I PIN_M14

QDRIIA_Q4 Read Data bus[4] 1.8-V HSTL Class I PIN_M12

QDRIIA_Q5 Read Data bus[5] 1.8-V HSTL Class I PIN_K13

QDRIIA_Q6 Read Data bus[6] 1.8-V HSTL Class I PIN_K12

QDRIIA_Q7 Read Data bus[7] 1.8-V HSTL Class I PIN_K14

QDRIIA_Q8 Read Data bus[8] 1.8-V HSTL Class I PIN_J14

QDRIIA_Q9 Read Data bus[9] 1.8-V HSTL Class I PIN_H12

QDRIIA_Q10 Read Data bus[10] 1.8-V HSTL Class I PIN_H11

QDRIIA_Q11 Read Data bus[11] 1.8-V HSTL Class I PIN_G10

QDRIIA_Q12 Read Data bus[12] 1.8-V HSTL Class I PIN_L14

QDRIIA_Q13 Read Data bus[13] 1.8-V HSTL Class I PIN_L12

QDRIIA_Q14 Read Data bus[14] 1.8-V HSTL Class I PIN_M13

QDRIIA_Q15 Read Data bus[15] 1.8-V HSTL Class I PIN_N12

QDRIIA_Q16 Read Data bus[16] 1.8-V HSTL Class I PIN_R14

26

QDRIIA_Q17 Read Data bus[17] 1.8-V HSTL Class I PIN_T14

QDRIIA_BWS_n0 Byte Write select[0] 1.8-V HSTL Class I PIN_B13

QDRIIA_BWS_n1 Byte Write select[1] 1.8-V HSTL Class I PIN_C13

QDRIIA_K_P Clock P
Differential 1.8-V HSTL

Class I
PIN_F12

QDRIIA_K_N Clock N
Differential 1.8-V HSTL

Class I
PIN_E12

QDRIIA_CQ_P Echo clock P 1.8-V HSTL Class I PIN_J13

QDRIIA_CQ_N Echo clock N 1.8-V HSTL Class I PIN_H13

QDRIIA_RPS_n Report Select 1.8-V HSTL Class I PIN_U9

QDRIIA_WPS_n Write Port Select 1.8-V HSTL Class I PIN_U8

QDRIIA_DOFF_n DLL enable 1.8-V HSTL Class I PIN_R9

QDRIIA_ODT
On-Die Termination

Input
1.8-V HSTL Class I PIN_T10

QDRIIA_QVLD Valid Output 1.8-V HSTL Class I PIN_R12

Table 2-12 QDRII+ SRAM B Pin Assignments, Schematic Signal Names, and

Functions

Schematic

Signal Name
Description I/O Standard

Arria 10 GX Pin

Number

QDRIIB_A0 Address bus[0] 1.8-V HSTL Class I PIN_L16

QDRIIB_A1 Address bus[1] 1.8-V HSTL Class I PIN_L15

QDRIIB_A2 Address bus[2] 1.8-V HSTL Class I PIN_E14

QDRIIB_A3 Address bus[3] 1.8-V HSTL Class I PIN_D14

QDRIIB_A4 Address bus[4] 1.8-V HSTL Class I PIN_G14

QDRIIB_A5 Address bus[5] 1.8-V HSTL Class I PIN_F14

QDRIIB_A6 Address bus[6] 1.8-V HSTL Class I PIN_D15

QDRIIB_A7 Address bus[7] 1.8-V HSTL Class I PIN_C15

QDRIIB_A8 Address bus[8] 1.8-V HSTL Class I PIN_F15

QDRIIB_A9 Address bus[9] 1.8-V HSTL Class I PIN_F16

QDRIIB_A10 Address bus[10] 1.8-V HSTL Class I PIN_H15

QDRIIB_A11 Address bus[11] 1.8-V HSTL Class I PIN_G15

QDRIIB_A12 Address bus[12] 1.8-V HSTL Class I PIN_E16

QDRIIB_A13 Address bus[13] 1.8-V HSTL Class I PIN_D16

QDRIIB_A14 Address bus[14] 1.8-V HSTL Class I PIN_E17

QDRIIB_A15 Address bus[15] 1.8-V HSTL Class I PIN_G17

27

QDRIIB_A16 Address bus[16] 1.8-V HSTL Class I PIN_G18

QDRIIB_A17 Address bus[17] 1.8-V HSTL Class I PIN_L17

QDRIIB_A18 Address bus[18] 1.8-V HSTL Class I PIN_K17

QDRIIB_A19 Address bus[19] 1.8-V HSTL Class I PIN_H17

QDRIIB_A20 Address bus[20] 1.8-V HSTL Class I PIN_H18

QDRIIB_A21 Address bus[21] 1.8-V HSTL Class I PIN_K18

QDRIIB_D0 Write data bus[0] 1.8-V HSTL Class I PIN_N20

QDRIIB_D1 Write data bus[1] 1.8-V HSTL Class I PIN_M19

QDRIIB_D2 Write data bus[2] 1.8-V HSTL Class I PIN_L19

QDRIIB_D3 Write data bus[3] 1.8-V HSTL Class I PIN_J19

QDRIIB_D4 Write data bus[4] 1.8-V HSTL Class I PIN_J20

QDRIIB_D5 Write data bus[5] 1.8-V HSTL Class I PIN_F19

QDRIIB_D6 Write data bus[6] 1.8-V HSTL Class I PIN_B19

QDRIIB_D7 Write data bus[7] 1.8-V HSTL Class I PIN_F20

QDRIIB_D8 Write data bus[8] 1.8-V HSTL Class I PIN_G20

QDRIIB_D9 Write data bus[9] 1.8-V HSTL Class I PIN_C20

QDRIIB_D10 Write data bus[10] 1.8-V HSTL Class I PIN_B20

QDRIIB_D11 Write data bus[11] 1.8-V HSTL Class I PIN_D19

QDRIIB_D12 Write data bus[12] 1.8-V HSTL Class I PIN_E19

QDRIIB_D13 Write data bus[13] 1.8-V HSTL Class I PIN_C18

QDRIIB_D14 Write data bus[14] 1.8-V HSTL Class I PIN_G19

QDRIIB_D15 Write data bus[15] 1.8-V HSTL Class I PIN_K19

QDRIIB_D16 Write data bus[16] 1.8-V HSTL Class I PIN_L20

QDRIIB_D17 Write data bus[17] 1.8-V HSTL Class I PIN_M20

QDRIIB_Q0 Read Data bus[0] 1.8-V HSTL Class I PIN_L22

QDRIIB_Q1 Read Data bus[1] 1.8-V HSTL Class I PIN_K22

QDRIIB_Q2 Read Data bus[2] 1.8-V HSTL Class I PIN_K23

QDRIIB_Q3 Read Data bus[3] 1.8-V HSTL Class I PIN_J23

QDRIIB_Q4 Read Data bus[4] 1.8-V HSTL Class I PIN_H21

QDRIIB_Q5 Read Data bus[5] 1.8-V HSTL Class I PIN_H22

QDRIIB_Q6 Read Data bus[6] 1.8-V HSTL Class I PIN_H23

QDRIIB_Q7 Read Data bus[7] 1.8-V HSTL Class I PIN_F22

QDRIIB_Q8 Read Data bus[8] 1.8-V HSTL Class I PIN_E23

QDRIIB_Q9 Read Data bus[9] 1.8-V HSTL Class I PIN_B23

QDRIIB_Q10 Read Data bus[10] 1.8-V HSTL Class I PIN_A22

QDRIIB_Q11 Read Data bus[11] 1.8-V HSTL Class I PIN_B22

28

QDRIIB_Q12 Read Data bus[12] 1.8-V HSTL Class I PIN_C22

QDRIIB_Q13 Read Data bus[13] 1.8-V HSTL Class I PIN_C21

QDRIIB_Q14 Read Data bus[14] 1.8-V HSTL Class I PIN_E22

QDRIIB_Q15 Read Data bus[15] 1.8-V HSTL Class I PIN_A21

QDRIIB_Q16 Read Data bus[16] 1.8-V HSTL Class I PIN_F21

QDRIIB_Q17 Read Data bus[17] 1.8-V HSTL Class I PIN_G23

QDRIIB_BWS_n0 Byte Write select[0] 1.8-V HSTL Class I PIN_H20

QDRIIB_BWS_n1 Byte Write select[1] 1.8-V HSTL Class I PIN_L21

QDRIIB_K_p
Clock P

Differential 1.8-V HSTL

Class I
PIN_K21

QDRIIB_K_n
Clock N

Differential 1.8-V HSTL

Class I
PIN_J21

QDRIIB_CQ_p Echo clock P 1.8-V HSTL Class I PIN_D23

QDRIIB_CQ_n Echo clock N 1.8-V HSTL Class I PIN_C23

QDRIIB_RPS_n Report Select 1.8-V HSTL Class I PIN_J16

QDRIIB_WPS_n Write Port Select 1.8-V HSTL Class I PIN_K16

QDRIIB_DOFF_n PLL Turn Off 1.8-V HSTL Class I PIN_H16

QDRIIB_ODT
On-Die Termination

Input
1.8-V HSTL Class I PIN_M17

QDRIIB_QVLD
Valid Output

Indicator
1.8-V HSTL Class I PIN_G22

Table 2-13 QDRII+ SRAM C Pin Assignments, Schematic Signal Names, and

Functions

Schematic

Signal Name
Description I/O Standard

Arria 10 GX Pin

Number

QDRIIC_A0 Address bus[0] 1.8-V HSTL Class I PIN_D25

QDRIIC_A1 Address bus[1] 1.8-V HSTL Class I PIN_D26

QDRIIC_A2 Address bus[2] 1.8-V HSTL Class I PIN_A26

QDRIIC_A3 Address bus[3] 1.8-V HSTL Class I PIN_A27

QDRIIC_A4 Address bus[4] 1.8-V HSTL Class I PIN_A29

QDRIIC_A5 Address bus[5] 1.8-V HSTL Class I PIN_A30

QDRIIC_A6 Address bus[6] 1.8-V HSTL Class I PIN_B27

QDRIIC_A7 Address bus[7] 1.8-V HSTL Class I PIN_B28

QDRIIC_A8 Address bus[8] 1.8-V HSTL Class I PIN_C27

QDRIIC_A9 Address bus[9] 1.8-V HSTL Class I PIN_C28

QDRIIC_A10 Address bus[10] 1.8-V HSTL Class I PIN_B29

29

QDRIIC_A11 Address bus[11] 1.8-V HSTL Class I PIN_B30

QDRIIC_A12 Address bus[12] 1.8-V HSTL Class I PIN_C30

QDRIIC_A13 Address bus[13] 1.8-V HSTL Class I PIN_C31

QDRIIC_A14 Address bus[14] 1.8-V HSTL Class I PIN_L25

QDRIIC_A15 Address bus[15] 1.8-V HSTL Class I PIN_K24

QDRIIC_A16 Address bus[16] 1.8-V HSTL Class I PIN_J24

QDRIIC_A17 Address bus[17] 1.8-V HSTL Class I PIN_G25

QDRIIC_A18 Address bus[18] 1.8-V HSTL Class I PIN_F25

QDRIIC_A19 Address bus[19] 1.8-V HSTL Class I PIN_J25

QDRIIC_A20 Address bus[20] 1.8-V HSTL Class I PIN_H25

QDRIIC_A21 Address bus[21] 1.8-V HSTL Class I PIN_J26

QDRIIC_D0 Write data bus[0] 1.8-V HSTL Class I PIN_AF36

QDRIIC_D1 Write data bus[1] 1.8-V HSTL Class I PIN_AF32

QDRIIC_D2 Write data bus[2] 1.8-V HSTL Class I PIN_AE34

QDRIIC_D3 Write data bus[3] 1.8-V HSTL Class I PIN_AB35

QDRIIC_D4 Write data bus[4] 1.8-V HSTL Class I PIN_AA35

QDRIIC_D5 Write data bus[5] 1.8-V HSTL Class I PIN_AA34

QDRIIC_D6 Write data bus[6] 1.8-V HSTL Class I PIN_Y34

QDRIIC_D7 Write data bus[7] 1.8-V HSTL Class I PIN_AB33

QDRIIC_D8 Write data bus[8] 1.8-V HSTL Class I PIN_AC33

QDRIIC_D9 Write data bus[9] 1.8-V HSTL Class I PIN_AE31

QDRIIC_D10 Write data bus[10] 1.8-V HSTL Class I PIN_AE33

QDRIIC_D11 Write data bus[11] 1.8-V HSTL Class I PIN_AD34

QDRIIC_D12 Write data bus[12] 1.8-V HSTL Class I PIN_AB34

QDRIIC_D13 Write data bus[13] 1.8-V HSTL Class I PIN_W34

QDRIIC_D14 Write data bus[14] 1.8-V HSTL Class I PIN_AC35

QDRIIC_D15 Write data bus[15] 1.8-V HSTL Class I PIN_AD35

QDRIIC_D16 Write data bus[16] 1.8-V HSTL Class I PIN_AE36

QDRIIC_D17 Write data bus[17] 1.8-V HSTL Class I PIN_AF31

QDRIIC_Q0 Read Data bus[0] 1.8-V HSTL Class I PIN_Y36

QDRIIC_Q1 Read Data bus[1] 1.8-V HSTL Class I PIN_U34

QDRIIC_Q2 Read Data bus[2] 1.8-V HSTL Class I PIN_T34

QDRIIC_Q3 Read Data bus[3] 1.8-V HSTL Class I PIN_T35

QDRIIC_Q4 Read Data bus[4] 1.8-V HSTL Class I PIN_P35

QDRIIC_Q5 Read Data bus[5] 1.8-V HSTL Class I PIN_P36

QDRIIC_Q6 Read Data bus[6] 1.8-V HSTL Class I PIN_N35

30

QDRIIC_Q7 Read Data bus[7] 1.8-V HSTL Class I PIN_N37

QDRIIC_Q8 Read Data bus[8] 1.8-V HSTL Class I PIN_N38

QDRIIC_Q9 Read Data bus[9] 1.8-V HSTL Class I PIN_M35

QDRIIC_Q10 Read Data bus[10] 1.8-V HSTL Class I PIN_M37

QDRIIC_Q11 Read Data bus[11] 1.8-V HSTL Class I PIN_N36

QDRIIC_Q12 Read Data bus[12] 1.8-V HSTL Class I PIN_M38

QDRIIC_Q13 Read Data bus[13] 1.8-V HSTL Class I PIN_M39

QDRIIC_Q14 Read Data bus[14] 1.8-V HSTL Class I PIN_R36

QDRIIC_Q15 Read Data bus[15] 1.8-V HSTL Class I PIN_T36

QDRIIC_Q16 Read Data bus[16] 1.8-V HSTL Class I PIN_U35

QDRIIC_Q17 Read Data bus[17] 1.8-V HSTL Class I PIN_V35

QDRIIC_BWS_n0 Byte Write select[0] 1.8-V HSTL Class I PIN_AD33

QDRIIC_BWS_n1 Byte Write select[1] 1.8-V HSTL Class I PIN_AE32

QDRIIC_K_p
Clock P

Differential 1.8-V

HSTL Class I
PIN_AF34

QDRIIC_K_n
Clock N

Differential 1.8-V

HSTL Class I
PIN_AF35

QDRIIC_CQ_p Echo clock P 1.8-V HSTL Class I PIN_AD36

QDRIIC_CQ_n Echo clock N 1.8-V HSTL Class I PIN_AC36

QDRIIC_RPS_n Report Select 1.8-V HSTL Class I PIN_E26

QDRIIC_WPS_n Write Port Select 1.8-V HSTL Class I PIN_F26

QDRIIC_DOFF_n PLL Turn Off 1.8-V HSTL Class I PIN_D24

QDRIIC_ODT On-Die Termination Input 1.8-V HSTL Class I PIN_B25

QDRIIC_QVLD Valid Output Indicator 1.8-V HSTL Class I PIN_W35

Table 2-14 QDRII+ SRAM D Pin Assignments, Schematic Signal Names, and

Functions

Schematic

Signal Name
Description I/O Standard

Arria 10 GX

Pin Number

QDRIID_A0 Address bus[0] 1.8-V HSTL Class I PIN_Y32

QDRIID_A1 Address bus[1] 1.8-V HSTL Class I PIN_W33

QDRIID_A2 Address bus[2] 1.8-V HSTL Class I PIN_P34

QDRIID_A3 Address bus[3] 1.8-V HSTL Class I PIN_P33

QDRIID_A4 Address bus[4] 1.8-V HSTL Class I PIN_L32

QDRIID_A5 Address bus[5] 1.8-V HSTL Class I PIN_K32

31

QDRIID_A6 Address bus[6] 1.8-V HSTL Class I PIN_R34

QDRIID_A7 Address bus[7] 1.8-V HSTL Class I PIN_R33

QDRIID_A8 Address bus[8] 1.8-V HSTL Class I PIN_T32

QDRIID_A9 Address bus[9] 1.8-V HSTL Class I PIN_R32

QDRIID_A10 Address bus[10] 1.8-V HSTL Class I PIN_N32

QDRIID_A11 Address bus[11] 1.8-V HSTL Class I PIN_M32

QDRIID_A12 Address bus[12] 1.8-V HSTL Class I PIN_T31

QDRIID_A13 Address bus[13] 1.8-V HSTL Class I PIN_R31

QDRIID_A14 Address bus[14] 1.8-V HSTL Class I PIN_K38

QDRIID_A15 Address bus[15] 1.8-V HSTL Class I PIN_L37

QDRIID_A16 Address bus[16] 1.8-V HSTL Class I PIN_K36

QDRIID_A17 Address bus[17] 1.8-V HSTL Class I PIN_N33

QDRIID_A18 Address bus[18] 1.8-V HSTL Class I PIN_M33

QDRIID_A19 Address bus[19] 1.8-V HSTL Class I PIN_L39

QDRIID_A20 Address bus[20] 1.8-V HSTL Class I PIN_K39

QDRIID_A21 Address bus[21] 1.8-V HSTL Class I PIN_L35

QDRIID_D0 Write data bus[0] 1.8-V HSTL Class I PIN_D36

QDRIID_D1 Write data bus[1] 1.8-V HSTL Class I PIN_F34

QDRIID_D2 Write data bus[2] 1.8-V HSTL Class I PIN_D34

QDRIID_D3 Write data bus[3] 1.8-V HSTL Class I PIN_D35

QDRIID_D4 Write data bus[4] 1.8-V HSTL Class I PIN_E34

QDRIID_D5 Write data bus[5] 1.8-V HSTL Class I PIN_E33

QDRIID_D6 Write data bus[6] 1.8-V HSTL Class I PIN_D33

QDRIID_D7 Write data bus[7] 1.8-V HSTL Class I PIN_F31

QDRIID_D8 Write data bus[8] 1.8-V HSTL Class I PIN_E31

QDRIID_D9 Write data bus[9] 1.8-V HSTL Class I PIN_F39

QDRIID_D10 Write data bus[10] 1.8-V HSTL Class I PIN_E37

QDRIID_D11 Write data bus[11] 1.8-V HSTL Class I PIN_G39

QDRIID_D12 Write data bus[12] 1.8-V HSTL Class I PIN_F36

QDRIID_D13 Write data bus[13] 1.8-V HSTL Class I PIN_E36

QDRIID_D14 Write data bus[14] 1.8-V HSTL Class I PIN_H30

QDRIID_D15 Write data bus[15] 1.8-V HSTL Class I PIN_F30

QDRIID_D16 Write data bus[16] 1.8-V HSTL Class I PIN_G30

QDRIID_D17 Write data bus[17] 1.8-V HSTL Class I PIN_G29

QDRIID_Q0 Read Data bus[0] 1.8-V HSTL Class I PIN_N28

QDRIID_Q1 Read Data bus[1] 1.8-V HSTL Class I PIN_N31

32

QDRIID_Q2 Read Data bus[2] 1.8-V HSTL Class I PIN_M28

QDRIID_Q3 Read Data bus[3] 1.8-V HSTL Class I PIN_M30

QDRIID_Q4 Read Data bus[4] 1.8-V HSTL Class I PIN_K29

QDRIID_Q5 Read Data bus[5] 1.8-V HSTL Class I PIN_J30

QDRIID_Q6 Read Data bus[6] 1.8-V HSTL Class I PIN_K31

QDRIID_Q7 Read Data bus[7] 1.8-V HSTL Class I PIN_G33

QDRIID_Q8 Read Data bus[8] 1.8-V HSTL Class I PIN_G34

QDRIID_Q9 Read Data bus[9] 1.8-V HSTL Class I PIN_H33

QDRIID_Q10 Read Data bus[10] 1.8-V HSTL Class I PIN_J31

QDRIID_Q11 Read Data bus[11] 1.8-V HSTL Class I PIN_L31

QDRIID_Q12 Read Data bus[12] 1.8-V HSTL Class I PIN_L30

QDRIID_Q13 Read Data bus[13] 1.8-V HSTL Class I PIN_J29

QDRIID_Q14 Read Data bus[14] 1.8-V HSTL Class I PIN_L29

QDRIID_Q15 Read Data bus[15] 1.8-V HSTL Class I PIN_M29

QDRIID_Q16 Read Data bus[16] 1.8-V HSTL Class I PIN_N30

QDRIID_Q17 Read Data bus[17] 1.8-V HSTL Class I PIN_P28

QDRIID_BWS_n0 Byte Write select[0] 1.8-V HSTL Class I PIN_C37

QDRIID_BWS_n1 Byte Write select[1] 1.8-V HSTL Class I PIN_F37

QDRIID_K_p Clock P
Differential 1.8-V

HSTL Class I
PIN_F32

QDRIID_K_n Clock N
Differential 1.8-V

HSTL Class I
PIN_E32

QDRIID_CQ_p Echo clock P 1.8-V HSTL Class I PIN_G35

QDRIID_CQ_n Echo clock N 1.8-V HSTL Class I PIN_F35

QDRIID_RPS_n Report Select 1.8-V HSTL Class I PIN_V33

QDRIID_WPS_n Write Port Select 1.8-V HSTL Class I PIN_V32

QDRIID_DOFF_n PLL Turn Off 1.8-V HSTL Class I PIN_W31

QDRIID_ODT On-Die Termination Input 1.8-V HSTL Class I PIN_Y33

QDRIID_QVLD ValidOutput Indicator 1.8-V HSTL Class I PIN_P31

Table 2-15 QDRII+ SRAM E Pin Assignments, Schematic Signal Names, and

Functions

Schematic

Signal Name
Description I/O Standard

Arria 10 GX

Pin Number

QDRIIE_A0 Address bus[0] 1.8-V HSTL Class I PIN_BB9

QDRIIE_A1 Address bus[1] 1.8-V HSTL Class I PIN_BB8

33

QDRIIE_A2 Address bus[2] 1.8-V HSTL Class I PIN_AW15

QDRIIE_A3 Address bus[3] 1.8-V HSTL Class I PIN_AW14

QDRIIE_A4 Address bus[4] 1.8-V HSTL Class I PIN_AW13

QDRIIE_A5 Address bus[5] 1.8-V HSTL Class I PIN_AY13

QDRIIE_A6 Address bus[6] 1.8-V HSTL Class I PIN_AY14

QDRIIE_A7 Address bus[7] 1.8-V HSTL Class I PIN_BA14

QDRIIE_A8 Address bus[8] 1.8-V HSTL Class I PIN_BA12

QDRIIE_A9 Address bus[9] 1.8-V HSTL Class I PIN_BB12

QDRIIE_A10 Address bus[10] 1.8-V HSTL Class I PIN_AU13

QDRIIE_A11 Address bus[11] 1.8-V HSTL Class I PIN_AV13

QDRIIE_A12 Address bus[12] 1.8-V HSTL Class I PIN_AY11

QDRIIE_A13 Address bus[13] 1.8-V HSTL Class I PIN_BA11

QDRIIE_A14 Address bus[14] 1.8-V HSTL Class I PIN_AK14

QDRIIE_A15 Address bus[15] 1.8-V HSTL Class I PIN_AM13

QDRIIE_A16 Address bus[16] 1.8-V HSTL Class I PIN_AN13

QDRIIE_A17 Address bus[17] 1.8-V HSTL Class I PIN_AL14

QDRIIE_A18 Address bus[18] 1.8-V HSTL Class I PIN_AM14

QDRIIE_A19 Address bus[19] 1.8-V HSTL Class I PIN_AT14

QDRIIE_A20 Address bus[20] 1.8-V HSTL Class I PIN_AU14

QDRIIE_A21 Address bus[21] 1.8-V HSTL Class I PIN_AP13

QDRIIE_D0 Write data bus[0] 1.8-V HSTL Class I PIN_BD18

QDRIIE_D1 Write data bus[1] 1.8-V HSTL Class I PIN_BC18

QDRIIE_D2 Write data bus[2] 1.8-V HSTL Class I PIN_AM20

QDRIIE_D3 Write data bus[3] 1.8-V HSTL Class I PIN_BC17

QDRIIE_D4 Write data bus[4] 1.8-V HSTL Class I PIN_AM18

QDRIIE_D5 Write data bus[5] 1.8-V HSTL Class I PIN_BD15

QDRIIE_D6 Write data bus[6] 1.8-V HSTL Class I PIN_BB15

QDRIIE_D7 Write data bus[7] 1.8-V HSTL Class I PIN_AV18

QDRIIE_D8 Write data bus[8] 1.8-V HSTL Class I PIN_AU18

QDRIIE_D9 Write data bus[9] 1.8-V HSTL Class I PIN_AT19

QDRIIE_D10 Write data bus[10] 1.8-V HSTL Class I PIN_AU19

QDRIIE_D11 Write data bus[11] 1.8-V HSTL Class I PIN_AR19

QDRIIE_D12 Write data bus[12] 1.8-V HSTL Class I PIN_BD13

QDRIIE_D13 Write data bus[13] 1.8-V HSTL Class I PIN_BD14

QDRIIE_D14 Write data bus[14] 1.8-V HSTL Class I PIN_BC15

QDRIIE_D15 Write data bus[15] 1.8-V HSTL Class I PIN_AP19

34

QDRIIE_D16 Write data bus[16] 1.8-V HSTL Class I PIN_BC16

QDRIIE_D17 Write data bus[17] 1.8-V HSTL Class I PIN_BD16

QDRIIE_Q0 Read Data bus[0] 1.8-V HSTL Class I PIN_AN17

QDRIIE_Q1 Read Data bus[1] 1.8-V HSTL Class I PIN_AT17

QDRIIE_Q2 Read Data bus[2] 1.8-V HSTL Class I PIN_AU17

QDRIIE_Q3 Read Data bus[3] 1.8-V HSTL Class I PIN_BA16

QDRIIE_Q4 Read Data bus[4] 1.8-V HSTL Class I PIN_AT16

QDRIIE_Q5 Read Data bus[5] 1.8-V HSTL Class I PIN_AT15

QDRIIE_Q6 Read Data bus[6] 1.8-V HSTL Class I PIN_AP16

QDRIIE_Q7 Read Data bus[7] 1.8-V HSTL Class I PIN_AP15

QDRIIE_Q8 Read Data bus[8] 1.8-V HSTL Class I PIN_AN15

QDRIIE_Q9 Read Data bus[9] 1.8-V HSTL Class I PIN_AM15

QDRIIE_Q10 Read Data bus[10] 1.8-V HSTL Class I PIN_AN16

QDRIIE_Q11 Read Data bus[11] 1.8-V HSTL Class I PIN_AR16

QDRIIE_Q12 Read Data bus[12] 1.8-V HSTL Class I PIN_AU15

QDRIIE_Q13 Read Data bus[13] 1.8-V HSTL Class I PIN_AV15

QDRIIE_Q14 Read Data bus[14] 1.8-V HSTL Class I PIN_BA15

QDRIIE_Q15 Read Data bus[15] 1.8-V HSTL Class I PIN_AW16

QDRIIE_Q16 Read Data bus[16] 1.8-V HSTL Class I PIN_AY16

QDRIIE_Q17 Read Data bus[17] 1.8-V HSTL Class I PIN_AY17

QDRIIE_BWS_n0 Byte Write select[0] 1.8-V HSTL Class I PIN_AM17

QDRIIE_BWS_n1 Byte Write select[1] 1.8-V HSTL Class I PIN_AM19

QDRIIE_K_p Clock P
Differential 1.8-V

HSTL Class I
PIN_AP18

QDRIIE_K_n Clock N
Differential 1.8-V

HSTL Class I
PIN_AR18

QDRIIE_CQ_p Echo clock P 1.8-V HSTL Class I PIN_AV16

QDRIIE_CQ_n Echo clock N 1.8-V HSTL Class I PIN_AV17

QDRIIE_RPS_n Report Select 1.8-V HSTL Class I PIN_BD10

QDRIIE_WPS_n Write Port Select 1.8-V HSTL Class I PIN_BC10

QDRIIE_DOFF_n PLL Turn Off 1.8-V HSTL Class I PIN_BD11

QDRIIE_ODT On-Die Termination Input 1.8-V HSTL Class I PIN_BB13

QDRIIE_QVLD ValidOutput Indicator 1.8-V HSTL Class I PIN_AR17

Table 2-16 QDRII+ SRAM F Pin Assignments, Schematic Signal Names, and

Functions

35

Schematic

Signal Name
Description I/O Standard

Arria 10 GX

Pin Number

QDRIIF_A0 Address bus[0] 1.8-V HSTL Class I PIN_AG14

QDRIIF_A1 Address bus[1] 1.8-V HSTL Class I PIN_AF14

QDRIIF_A2 Address bus[2] 1.8-V HSTL Class I PIN_AJ13

QDRIIF_A3 Address bus[3] 1.8-V HSTL Class I PIN_AK13

QDRIIF_A4 Address bus[4] 1.8-V HSTL Class I PIN_AH13

QDRIIF_A5 Address bus[5] 1.8-V HSTL Class I PIN_AG13

QDRIIF _A6 Address bus[6] 1.8-V HSTL Class I PIN_AG12

QDRIIF_A7 Address bus[7] 1.8-V HSTL Class I PIN_AH12

QDRIIF_A8 Address bus[8] 1.8-V HSTL Class I PIN_AM12

QDRIIF_A9 Address bus[9] 1.8-V HSTL Class I PIN_AN12

QDRIIF_A10 Address bus[10] 1.8-V HSTL Class I PIN_AE12

QDRIIF_A11 Address bus[11] 1.8-V HSTL Class I PIN_AF12

QDRIIF_A12 Address bus[12] 1.8-V HSTL Class I PIN_AK12

QDRIIF_A13 Address bus[13] 1.8-V HSTL Class I PIN_AL12

QDRIIF_A14 Address bus[14] 1.8-V HSTL Class I PIN_AT9

QDRIIF_A15 Address bus[15] 1.8-V HSTL Class I PIN_AV7

QDRIIF_A16 Address bus[16] 1.8-V HSTL Class I PIN_AV6

QDRIIF_A17 Address bus[17] 1.8-V HSTL Class I PIN_AU9

QDRIIF_A18 Address bus[18] 1.8-V HSTL Class I PIN_AV8

QDRIIF_A19 Address bus[19] 1.8-V HSTL Class I PIN_AU8

QDRIIF_A20 Address bus[20] 1.8-V HSTL Class I PIN_AU7

QDRIIF_A21 Address bus[21] 1.8-V HSTL Class I PIN_AP10

QDRIIF_D0 Write data bus[0] 1.8-V HSTL Class I PIN_AJ9

QDRIIF_D1 Write data bus[1] 1.8-V HSTL Class I PIN_AJ10

QDRIIF_D2 Write data bus[2] 1.8-V HSTL Class I PIN_AH10

QDRIIF_D3 Write data bus[3] 1.8-V HSTL Class I PIN_AG10

QDRIIF_D4 Write data bus[4] 1.8-V HSTL Class I PIN_AG9

QDRIIF_D5 Write data bus[5] 1.8-V HSTL Class I PIN_AF10

QDRIIF_D6 Write data bus[6] 1.8-V HSTL Class I PIN_AD10

QDRIIF_D7 Write data bus[7] 1.8-V HSTL Class I PIN_AD11

QDRIIF_D8 Write data bus[8] 1.8-V HSTL Class I PIN_AC10

QDRIIF_D9 Write data bus[9] 1.8-V HSTL Class I PIN_AA9

QDRIIF_D10 Write data bus[10] 1.8-V HSTL Class I PIN_AA10

QDRIIF_D11 Write data bus[11] 1.8-V HSTL Class I PIN_Y9

36

QDRIIF_D12 Write data bus[12] 1.8-V HSTL Class I PIN_AE11

QDRIIF_D13 Write data bus[13] 1.8-V HSTL Class I PIN_AF9

QDRIIF_D14 Write data bus[14] 1.8-V HSTL Class I PIN_AF11

QDRIIF_D15 Write data bus[15] 1.8-V HSTL Class I PIN_AK9

QDRIIF_D16 Write data bus[16] 1.8-V HSTL Class I PIN_AK11

QDRIIF_D17 Write data bus[17] 1.8-V HSTL Class I PIN_AL11

QDRIIF_Q0 Read Data bus[0] 1.8-V HSTL Class I PIN_AP6

QDRIIF_Q1 Read Data bus[1] 1.8-V HSTL Class I PIN_AR6

QDRIIF_Q2 Read Data bus[2] 1.8-V HSTL Class I PIN_AM10

QDRIIF_Q3 Read Data bus[3] 1.8-V HSTL Class I PIN_AA12

QDRIIF_Q4 Read Data bus[4] 1.8-V HSTL Class I PIN_AA11

QDRIIF_Q5 Read Data bus[5] 1.8-V HSTL Class I PIN_Y11

QDRIIF_Q6 Read Data bus[6] 1.8-V HSTL Class I PIN_Y12

QDRIIF_Q7 Read Data bus[7] 1.8-V HSTL Class I PIN_W13

QDRIIF_Q8 Read Data bus[8] 1.8-V HSTL Class I PIN_W14

QDRIIF_Q9 Read Data bus[9] 1.8-V HSTL Class I PIN_W11

QDRIIF_Q10 Read Data bus[10] 1.8-V HSTL Class I PIN_V10

QDRIIF_Q11 Read Data bus[11] 1.8-V HSTL Class I PIN_W10

QDRIIF_Q12 Read Data bus[12] 1.8-V HSTL Class I PIN_W9

QDRIIF_Q13 Read Data bus[13] 1.8-V HSTL Class I PIN_Y13

QDRIIF_Q14 Read Data bus[14] 1.8-V HSTL Class I PIN_Y14

QDRIIF_Q15 Read Data bus[15] 1.8-V HSTL Class I PIN_AL10

QDRIIF_Q16 Read Data bus[16] 1.8-V HSTL Class I PIN_AM9

QDRIIF_Q17 Read Data bus[17] 1.8-V HSTL Class I PIN_AN6

QDRIIF_BWS_n0 Byte Write select[0] 1.8-V HSTL Class I PIN_AB10

QDRIIF_BWS_n1 Byte Write select[1] 1.8-V HSTL Class I PIN_AB9

QDRIIF_K_p Clock P
Differential 1.8-V

HSTL Class I
PIN_AE9

QDRIIF_K_n Clock N
Differential 1.8-V

HSTL Class I
PIN_AD9

QDRIIF_CQ_p Echo clock P 1.8-V HSTL Class I PIN_AM8

QDRIIF_CQ_n Echo clock N 1.8-V HSTL Class I PIN_AM7

QDRIIF_RPS_n Report Select 1.8-V HSTL Class I PIN_AB13

QDRIIF_WPS_n Write Port Select 1.8-V HSTL Class I PIN_AB14

QDRIIF_DOFF_n PLL Turn Off 1.8-V HSTL Class I PIN_AB12

QDRIIF_ODT On-Die Termination Input 1.8-V HSTL Class I PIN_AE14

37

QDRIIF_QVLD ValidOutput Indicator 1.8-V HSTL Class I PIN_AL9

2.9 QSPF+ Ports

The development board has four independent 40G QSFP+ connectors that use one

transceiver channel each from the Arria 10 GX FPGA device. These modules take in

serial data from the Arria 10 GX FPGA device and transform them to optical signals.

The board includes cage assemblies for the QSFP+ connectors. Figure 2-12 shows

the connections between the QSFP+ and Arria 10 GX FPGA.

Figure 2-12 Connection between the QSFP+ and Arria GX FPGA

Table 2-17, Table 2-18, Table 2-19 and Table 2-20 list the QSFP+ A, B, C and D pin

assignments and signal names relative to the Arria 10 GX device.

Table 2-17 QSFP+ A Pin Assignments, Schematic Signal Names, and Functions

Schematic

Signal Name
Description I/O Standard

Arria 10 GX

Pin Number

QSFPA_TX_P0 Transmitter data of channel 0 1.4-V PCML PIN_BD5

QSFPA_TX_N0 Transmitter data of channel 0 1.4-V PCML PIN_BD6

QSFPA_RX_P0 Receiver data of channel 0 1.4-V PCML PIN_BB5

QSFPA_RX_N0 Receiver data of channel 0 1.4-V PCML PIN_BB6

QSFPA_TX_P1 Transmitter data of channel 1 1.4-V PCML PIN_BC3

38

QSFPA_TX_N1 Transmitter data of channel 1 1.4-V PCML PIN_BC4

QSFPA_RX_P1 Receiver data of channel 1 1.4-V PCML PIN_AY5

QSFPA_RX_N1 Receiver data of channel 1 1.4-V PCML PIN_AY6

QSFPA_TX_P2 Transmitter data of channel 2 1.4-V PCML PIN_BB1

QSFPA_TX_N2 Transmitter data of channel 2 1.4-V PCML PIN_BB2

QSFPA_RX_P2 Receiver data of channel 2 1.4-V PCML PIN_BA3

QSFPA_RX_N2 Receiver data of channel 2 1.4-V PCML PIN_BA4

QSFPA_TX_P3 Transmitter data of channel 3 1.4-V PCML PIN_AY1

QSFPA_TX_N3 Transmitter data of channel 3 1.4-V PCML PIN_AY2

QSFPA_RX_P3 Receiver data of channel 3 1.4-V PCML PIN_AW3

QSFPA_RX_N3 Receiver data of channel 3 1.4-V PCML PIN_AW4

QSFPA_MOD_SEL_n Module Select 1.8V PIN_AP30

QSFPA_RST_n Module Reset 1.8V PIN_AU30

QSFPA_SCL 2-wire serial interface clock 1.8V PIN_BA32

QSFPA_SDA 2-wire serial interface data 1.8V PIN_BC31

QSFPA_LP_MODE Low Power Mode 1.8V PIN_BD31

QSFPA_INTERRUPT_n Interrupt 1.8V PIN_BA30

QSFPA_MOD_PRS_n Module Present 1.8V PIN_BB30

Table 2-18 QSFP+ B Pin Assignments, Schematic Signal Names, and Functions

Schematic

Signal Name
Description I/O Standard

Arria 10 GX

Pin Number

QSFPB_TX_P0 Transmitter data of channel 0 1.4-V PCML PIN_AP1

QSFPB_TX_N0 Transmitter data of channel 0 1.4-V PCML PIN_AP2

QSFPB_RX_P0 Receiver data of channel 0 1.4-V PCML PIN_AN3

QSFPB_RX_N0 Receiver data of channel 0 1.4-V PCML PIN_AN4

QSFPB_TX_P1 Transmitter data of channel 1 1.4-V PCML PIN_AM1

QSFPB_TX_N1 Transmitter data of channel 1 1.4-V PCML PIN_AM2

QSFPB_RX_P1 Receiver data of channel 1 1.4-V PCML PIN_AL3

QSFPB_RX_N1 Receiver data of channel 1 1.4-V PCML PIN_AL4

QSFPB_TX_P2 Transmitter data of channel 2 1.4-V PCML PIN_AK1

QSFPB_TX_N2 Transmitter data of channel 2 1.4-V PCML PIN_AK2

QSFPB_RX_P2 Receiver data of channel 2 1.4-V PCML PIN_AJ3

QSFPB_RX_N2 Receiver data of channel 2 1.4-V PCML PIN_AJ4

QSFPB_TX_P3 Transmitter data of channel 3 1.4-V PCML PIN_AH1

QSFPB_TX_N3 Transmitter data of channel 3 1.4-V PCML PIN_AH2

39

QSFPB_RX_P3 Receiver data of channel 3 1.4-V PCML PIN_AG3

QSFPB_RX_N3 Receiver data of channel 3 1.4-V PCML PIN_AG4

QSFPB_MOD_SEL_n Module Select 1.8V PIN_AY29

QSFPB_RST_n Module Reset 1.8V PIN_BA29

QSFPB_SCL 2-wire serial interface clock 1.8V PIN_BB29

QSFPB_SDA 2-wire serial interface data 1.8V PIN_AY28

QSFPB_LP_MODE Low Power Mode 1.8V PIN_BB28

QSFPB_INTERRUPT_n Interrupt 1.8V PIN_BA27

QSFPB_MOD_PRS_n Module Present 1.8V PIN_BC27

Table 2-19 QSFP+ C Pin Assignments, Schematic Signal Names, and Functions

Schematic

Signal Name
Description I/O Standard

Arria 10

GX Pin

Number

QSFPC_TX_P0 Transmitter data of channel 0 1.4-V PCML PIN_AB1

QSFPC_TX_N0 Transmitter data of channel 0 1.4-V PCML PIN_AB2

QSFPC_RX_P0 Receiver data of channel 0 1.4-V PCML PIN_AA3

QSFPC_RX_N0 Receiver data of channel 0 1.4-V PCML PIN_AA4

QSFPC_TX_P1 Transmitter data of channel 1 1.4-V PCML PIN_Y1

QSFPC_TX_N1 Transmitter data of channel 1 1.4-V PCML PIN_Y2

QSFPC_RX_P1 Receiver data of channel 1 1.4-V PCML PIN_W3

QSFPC_RX_N1 Receiver data of channel 1 1.4-V PCML PIN_W4

QSFPC_TX_P2 Transmitter data of channel 2 1.4-V PCML PIN_V1

QSFPC_TX_N2 Transmitter data of channel 2 1.4-V PCML PIN_V2

QSFPC_RX_P2 Receiver data of channel 2 1.4-V PCML PIN_U3

QSFPC_RX_N2 Receiver data of channel 2 1.4-V PCML PIN_U4

QSFPC_TX_P3 Transmitter data of channel 3 1.4-V PCML PIN_T1

QSFPC_TX_N3 Transmitter data of channel 3 1.4-V PCML PIN_T2

QSFPC_RX_P3 Receiver data of channel 3 1.4-V PCML PIN_R3

QSFPC_RX_N3 Receiver data of channel 3 1.4-V PCML PIN_R4

QSFPC_MOD_SEL_n Module Select 1.8V PIN_BB27

QSFPC_RST_n Module Reset 1.8V PIN_BA26

QSFPC_SCL 2-wire serial interface clock 1.8V PIN_AU29

40

QSFPC_SDA 2-wire serial interface data 1.8V PIN_AU28

QSFPC_LP_MODE Low Power Mode 1.8V PIN_AT30

QSFPC_INTERRUPT_n Interrupt 1.8V PIN_AT29

QSFPC_MOD_PRS_n Module Present 1.8V PIN_AR28

Table 2-20 QSFP+ D Pin Assignments, Schematic Signal Names, and Functions

Schematic

Signal Name
Description I/O Standard

Arria 10

GX Pin

Number

QSFPD_TX_P0 Transmitter data of channel 0 1.4-V PCML PIN_K1

QSFPD_TX_N0 Transmitter data of channel 0 1.4-V PCML PIN_K2

QSFPD_RX_P0 Receiver data of channel 0 1.4-V PCML PIN_J3

QSFPD_RX_N0 Receiver data of channel 0 1.4-V PCML PIN_J4

QSFPD_TX_P1 Transmitter data of channel 1 1.4-V PCML PIN_H1

QSFPD_TX_N1 Transmitter data of channel 1 1.4-V PCML PIN_H2

QSFPD_RX_P1 Receiver data of channel 1 1.4-V PCML PIN_G3

QSFPD_RX_N1 Receiver data of channel 1 1.4-V PCML PIN_G4

QSFPD_TX_P2 Transmitter data of channel 2 1.4-V PCML PIN_F1

QSFPD_TX_N2 Transmitter data of channel 2 1.4-V PCML PIN_F2

QSFPD_RX_P2 Receiver data of channel 2 1.4-V PCML PIN_E3

QSFPD_RX_N2 Receiver data of channel 2 1.4-V PCML PIN_E4

QSFPD_TX_P3 Transmitter data of channel 3 1.4-V PCML PIN_D1

QSFPD_TX_N3 Transmitter data of channel 3 1.4-V PCML PIN_D2

QSFPD_RX_P3 Receiver data of channel 3 1.4-V PCML PIN_D5

QSFPD_RX_N3 Receiver data of channel 3 1.4-V PCML PIN_D6

QSFPD_MOD_SEL_n Module Select 1.8V PIN_AR27

QSFPD_RST_n Module Reset 1.8V PIN_AP29

QSFPD_SCL 2-wire serial interface clock 1.8V PIN_AP28

QSFPD_SDA 2-wire serial interface data 1.8V PIN_AN30

QSFPD_LP_MODE Low Power Mode 1.8V PIN_AN28

QSFPD_INTERRUPT_n Interrupt 1.8V PIN_AM29

QSFPD_MOD_PRS_n Module Present 1.8V PIN_AM28

2.10 PCI Express

The FPGA development board is designed to fit entirely into a PC motherboard with x8

41

or x16 PCI Express slot. Utilizing built-in transceivers on the Arria 10 GX device, it is

able to provide a fully integrated PCI Express-compliant solution for multi-lane (x1, x4,

and x8) applications. With the PCI Express hard IP block incorporated in the Arria 10

GX device, it will allow users to implement simple and fast protocol, as well as saving

logic resources for logic application. Figure 2-13 presents the pin connection

established between the Arria 10 GX and PCI Express.

The Dual PCI Express interface supports complete PCI Express Gen1 at 2.5Gbps/lane,

Gen2 at 5.0Gbps/lane, and Gen3 at 8.0Gbps/lane protocol stack solution compliant to

PCI Express base specification 3.0 that includes PHY-MAC, Data Link, and transaction

layer circuitry embedded in PCI Express hard IP blocks.

Please note that it is a requirement that you connect the PCIe external power

connector to 6-pin 12V DC power connector in the FPGA to avoid FPGA damage due

to insufficient power. The PCIE_REFCLK_p signal is a differential input that is driven

from the PC motherboard on this board through the PCIe edge connector. A DIP switch

(SW2) is connected to the PCI Express to allow different configurations to enable a x1,

x4, or x8 PCIe.

Table 2-21 summarizes the Dual PCI Express pin assignments of the signal names

relative to the Arria 10 GX FPGA.

Figure 2-13 PCI Express pin connection

Table 2-21 PCI Express Pin Assignments, Schematic Signal Names, and

Functions

42

Schematic

Signal Name
Description I/O Standard

Arria 10 GX Pin

Number

PCIE_TX_p0 Add-in card transmit bus 1.4-V PCML PIN_AV44

PCIE_TX_n0 Add-in card transmit bus 1.4-V PCML PIN_AV43

PCIE_TX_p1 Add-in card transmit bus 1.4-V PCML PIN_AT44

PCIE_TX_n1 Add-in card transmit bus 1.4-V PCML PIN_AT43

PCIE_TX_p2 Add-in card transmit bus 1.4-V PCML PIN_AP44

PCIE_TX_n2 Add-in card transmit bus 1.4-V PCML PIN_AP43

PCIE_TX_p3 Add-in card transmit bus 1.4-V PCML PIN_AM44

PCIE_TX_n3 Add-in card transmit bus 1.4-V PCML PIN_AM43

PCIE_TX_p4 Add-in card transmit bus 1.4-V PCML PIN_AK44

PCIE_TX_n4 Add-in card transmit bus 1.4-V PCML PIN_AK43

PCIE_TX_p5 Add-in card transmit bus 1.4-V PCML PIN_AH44

PCIE_TX_n5 Add-in card transmit bus 1.4-V PCML PIN_AH43

PCIE_TX_p6 Add-in card transmit bus 1.4-V PCML PIN_AF44

PCIE_TX_n6 Add-in card transmit bus 1.4-V PCML PIN_AF43

PCIE_TX_p7 Add-in card transmit bus 1.4-V PCML PIN_AD44

PCIE_TX_n7 Add-in card transmit bus 1.4-V PCML PIN_AD43

PCIE_RX_p0 Add-in card receive bus 1.4-V PCML PIN_AU42

PCIE_RX_n0 Add-in card receive bus 1.4-V PCML PIN_AU41

PCIE_RX_p1 Add-in card receive bus 1.4-V PCML PIN_AR42

PCIE_RX_n1 Add-in card receive bus 1.4-V PCML PIN_AR41

PCIE_RX_p2 Add-in card receive bus 1.4-V PCML PIN_AN42

PCIE_RX_n2 Add-in card receive bus 1.4-V PCML PIN_AN41

PCIE_RX_p3 Add-in card receive bus 1.4-V PCML PIN_AL42

PCIE_RX_n3 Add-in card receive bus 1.4-V PCML PIN_AL41

PCIE_RX_p4 Add-in card receive bus 1.4-V PCML PIN_AJ42

PCIE_RX_n4 Add-in card receive bus 1.4-V PCML PIN_AJ41

PCIE_RX_p5 Add-in card receive bus 1.4-V PCML PIN_AG42

PCIE_RX_n5 Add-in card receive bus 1.4-V PCML PIN_AG41

PCIE_RX_p6 Add-in card receive bus 1.4-V PCML PIN_AE42

PCIE_RX_n6 Add-in card receive bus 1.4-V PCML PIN_AE41

PCIE_RX_p7 Add-in card receive bus 1.4-V PCML PIN_AC42

43

PCIE_RX_n7 Add-in card receive bus 1.4-VPCML PIN_AC41

PCIE_REFCLK_p Motherboard reference clock HCSL PIN_AH40

PCIE_REFCLK_n Motherboard reference clock HCSL PIN_AH39

PCIE_PERST_n Reset 1.8-V PIN_AT25

PCIE_SMBCLK SMB clock 1.8-V PIN_AM25

PCIE_SMBDAT SMB data 1.8-V PIN_BD24

PCIE_WAKE_n Wake signal 1.8-V PIN_AN26

PCIE_PRSNT1n Hot plug detect - -

PCIE_PRSNT2n_x1
Hot plug detect x1 PCIe slot

enabled using SW5 dip switch

- -

PCIE_PRSNT2n_x4
Hot plug detect x4 PCIe slot

enabled using SW5 dip switch

- -

PCIE_PRSNT2n_x8
Hot plug detect x8 PCIe slot

enabled using SW5 dip switch

- -

PCIE2_TX_p0 Add-in card transmit bus 1.4-V PCML PIN_P44

PCIE2_TX_n0 Add-in card transmit bus 1.4-V PCML PIN_P43

PCIE2_TX_p1 Add-in card transmit bus 1.4-V PCML PIN_M44

PCIE2_TX_n1 Add-in card transmit bus 1.4-V PCML PIN_M43

PCIE2_TX_p2 Add-in card transmit bus 1.4-V PCML PIN_K44

PCIE2_TX_n2 Add-in card transmit bus 1.4-V PCML PIN_K43

PCIE2_TX_p3 Add-in card transmit bus 1.4-V PCML PIN_H44

PCIE2_TX_n3 Add-in card transmit bus 1.4-V PCML PIN_H43

PCIE2_TX_p4 Add-in card transmit bus 1.4-V PCML PIN_F44

PCIE2_TX_n4 Add-in card transmit bus 1.4-V PCML PIN_F43

PCIE2_TX_p5 Add-in card transmit bus 1.4-V PCML PIN_D44

PCIE2_TX_n5 Add-in card transmit bus 1.4-V PCML PIN_D43

PCIE2_TX_p6 Add-in card transmit bus 1.4-V PCML PIN_B44

PCIE2_TX_n6 Add-in card transmit bus 1.4-V PCML PIN_B43

PCIE2_TX_p7 Add-in card transmit bus 1.4-V PCML PIN_A42

PCIE2_TX_n7 Add-in card transmit bus 1.4-V PCML PIN_A41

PCIE2_RX_p0 Add-in card receive bus 1.4-V PCML PIN_N42

PCIE2_RX_n0 Add-in card receive bus 1.4-V PCML PIN_N41

PCIE2_RX_p1 Add-in card receive bus 1.4-V PCML PIN_L42

PCIE2_RX_n1 Add-in card receive bus 1.4-V PCML PIN_L41

PCIE2_RX_p2 Add-in card receive bus 1.4-V PCML PIN_J42

PCIE2_RX_n2 Add-in card receive bus 1.4-V PCML PIN_J41

44

PCIE2_RX_p3 Add-in card receive bus 1.4-V PCML PIN_G42

PCIE2_RX_n3 Add-in card receive bus 1.4-V PCML PIN_G41

PCIE2_RX_p4 Add-in card receive bus 1.4-V PCML PIN_E42

PCIE2_RX_n4 Add-in card receive bus 1.4-V PCML PIN_E41

PCIE2_RX_p5 Add-in card receive bus 1.4-V PCML PIN_D40

PCIE2_RX_n5 Add-in card receive bus 1.4-V PCML PIN_D39

PCIE2_RX_p6 Add-in card receive bus 1.4-V PCML PIN_C42

PCIE2_RX_n6 Add-in card receive bus 1.4-V PCML PIN_C41

PCIE2_RX_p7 Add-in card receive bus 1.4-V PCML PIN_B40

PCIE2_RX_n7 Add-in card receive bus 1.4-VPCML PIN_B39

PCIE2_REFCLK_p Motherboard reference clock HCSL PIN_Y40

PCIE2_REFCLK_n Motherboard reference clock HCSL PIN_Y39

PCIE2_PERST_n Reset 1.8-V PIN_AR24

2.11 2x5 Timing Header

The FPGA board has one 2x5 GPIO header J5 for expansion function. The pin-out of

J5 is shown in Figure 2-14. GPIO_P0 ~ GPIO_P3 are bi-direction 1.8V GPIO.

GPIO_CLK0 and GPIO_CLK1 are connected to FPGA dedicated clock input and can

be configured as two single-ended clock signals or one differential clock signal. Users

can use Terasic defined RS422-RJ45 board and TUB (Timing and UART Board) for

RS422 and external clock inputs/UART applications.

Table 2-22 shows the mapping of the FPGA pin assignments to the 2x5 GPIO header..

Figure 2-14 Pin-out of Timing Expansion Header

45

Table 2-22 Timing Expansion Header Pin Assignments, Schematic Signal Names,

and Functions

Schematic

Signal Name
Description I/O Standard

Stratix 10

GX/SX Pin

Number

GPIO_P0 Bi-direction 1.8V GPIO 1.8-V PIN_BC28

GPIO_P1 Bi-direction 1.8V GPIO 1.8-V PIN_BD29

GPIO_P2 Bi-direction 1.8V GPIO 1.8-V PIN_BC30

GPIO_P3 Bi-direction 1.8V GPIO 1.8-V PIN_AR29

GPIO_CLK0
FPGA dedicated clock input or

Bi-direction 1.8V GPIO
1.8-V PIN_ AV33

GPIO_CLK1
FPGA dedicated clock input or

Bi-direction 1.8V GPIO
1.8-V PIN_ AW33

2.12 2x4 GPIO Expansion Header

The 2x4, 2.0 mm pitch GPIO expansion header is designed to provide seven user pins

connected directly to the FPGA and one GND pin. Figure 2-15 shows the connection

between 2x4 GPIO header and Arria 10 GX FPGA. Table 2-23 lists the pin assignment

of 2x4 GPIO header.

Figure 2-15 Connection between 2x4 GPIO Header and Arria 10 GX FPGA

46

Table 2-23 Pin Assignments of 2x4 GPIO Header

Schematic

Signal Name
Description I/O Standard

Arria 10 GX

Pin Number

GPIO0 GPIO Connection [0]

1.8-V

PIN_AT36

GPIO1 GPIO Connection [1] PIN_AT35

GPIO2 GPIO Connection [2] PIN_AU35

GPIO3 GPIO Connection [3] PIN_AU34

GPIO4 GPIO Connection [4] PIN_AV35

GPIO5 GPIO Connection [5] PIN_AU32

GPIO6 GPIO Connection [6] PIN_AV32

47

Chapter 3

System Builder

his chapter describes how users can create a custom design project for the

FPGA board from a software tool named System Builder.

3.1 Introduction

The System Builder is a Windows based software utility. It is designed to help users

create a Quartus II project for the FPGA board within minutes. The Quartus II project

files generated include:

 Quartus II Project File (.qpf)

 Quartus II Setting File (.qsf)

 Top-Level Design File (.v)

 External PLL Controller (.v)

 Synopsis Design Constraints file (.sdc)

 Pin Assignment Document (.htm)

The System Builder not only can generate the files above, but can also provide

error-checking rules to handle situation that are prone to errors. The common mistakes

that users encounter are the following:

 Board damaged for wrong pin/bank voltage assignment.

 Board malfunction caused by wrong device connections or missing pin

counts for connected ends.

 Performance dropped because of improper pin assignments

T

48

3.2 General Design Flow

This section provides the detail procedures on how the System Build

This section will introduce the general design flow to build a project for the FPGA board

via the System Builder. The general design flow is illustrated in the Figure 3-1.

Users should launch System Builder and create a new project according to their design

requirements. When users complete the settings, the System Builder will generate two

major files which include top-level design file (.v) and the Quartus II setting file (.qsf).

The top-level design file contains top-level Verilog wrapper for users to add their own

design/logic. The Quartus II setting file contains information such as FPGA device type,

top-level pin assignment, and I/O standard for each user-defined I/O pin.

Finally, Quartus II programmer must be used to download SOF file to the FPGA board

using JTAG interface.

Figure 3-1Thegeneral design flow of building a project

49

3.3 Using System Builder

This section provides the detail procedures on how the System Builder is used.

 Install and Launch the System Builder

The System Builder is located under the directory: "Tools\SystemBuilder" in the

System CD. Users can copy the entire folder to the host computer without installing the

utility. Please execute the SystemBuilder.exe on the host computer, as shown in

Figure 3-2.

Figure 3-2 The System Builder window

 Enter Project Name

The project name entered in the circled area as shown in Figure 3-3, will be assigned

automatically as the name of the top-level design entry.

50

Figure 3-3 The Quartus project name

 System Configuration

Users are given the flexibility of enabling their choices of components connected to the

FPGA under System Configuration, as shown in Figure 3-4. Each component of the

FPGA board is listed to be enabled or disabled according to users’ needs. If a

component is enabled, the System Builder will automatically generate the associated

pin assignments including its pin name, pin location, pin direction, and I/O standards.

Note: The pin assignments for some components (e.g. QDRII+ and QSFP+) require

associated controller codes in the Quartus project or it would result in compilation error.

Hence please do not select them if they are not needed in the design. To use the

QDRII+ controller, please refer to the QDRII+ SRAM demonstration in Chapter 6.

51

Figure 3-4 System Configuration group

 Programmable Oscillator

There are two external oscillators on-board that provide reference clocks for the

following signals

QSFPA_REFCLK,QSFPB_REFCLK,QSFPC_REFCLK,QSFPD_REFCLK,

QDRIIA_REFCLK, QDRIIB_REFCLK, QDRIIC_REFCLK , QDRIID_REFCLK ,

QDRIIE_REFCLK and QDRIIF_REFCLK. To use these clock, users can select the

desired frequency on the Programmable Oscillator group, as shown in Figure 3-5.

QDRII, or QSFP+ must be checked before users can start to specify the desired

frequency in the programmable oscillators.

As the Quartus project is created, System Builder automatically generates the

associated controller according to users’ desired frequency in Verilog which facilitates

users’ implementation as no additional control code is required to configure the

programmable oscillator.

Note: If users need to dynamically change the frequency, they would need to modify

the generated control code themselves.

52

Figure 3-5 External programmable oscillators

 Project Setting Management

The System Builder also provides functions to restore default setting, load a setting,

and save board configuration file, as shown in HFigure 3-6. Users can save the current

board configuration information into a .cfg file and load it into the System Builder.

Figure 3-6 Project Settings

53

 Project Generation

When users press the Generate button, the System Builder will generate the

corresponding Quartus II files and documents as listed in theTable 3-1 in the directory

specified by the user.

Table 3-1 Files generated by the System Builder

No. Filename Description

1 <Project name>.v Top Level Verilog File for Quartus II

2 Si5340_controller (*) Si5340A and Si5340B External Oscillator Controller IP

3 <Project name>.qpf Quartus II Project File

4 <Project name>.qsf Quartus II Setting File

5 <Project name>.sdc Synopsis Design Constraints File for Quartus II

6 <Project name>.htm Pin Assignment Document

(*) The Si5340_controller is a folder which contains the Verilog files for the

configuration of Si5340A and Si5340B.

Users can add custom logic into the project and compile the project in Quartus II to

generate the SRAM Object File (.sof).

For Si5340A, its controller will be instantiated in the Quartus II top-level file, as listed

below:

54

For Si5340B, its controller will be instantiated in the Quartus II top-level file, as listed

below:

If the dynamic configuration for the oscillator is required, users need to modify the code

according to users’ desired behavior.

55

Chapter 4

Flash Programming

s you develop your own project using the Altera tools, you can program the

flash memory device so that your own design loads from CFI flash memory

into the FPGA on power up. This chapter will describe how to use Altera

Quartus Prime Programmer Tool to program the common flash interface (CFI) flash

memory device on the FPGA board.

The Arria 10 GX FPGA development board ships with the CFI flash device

preprogrammed with two FPGA configurations. The two configuration images are

called: factory image and user image, respectively.

4.1 FPGA Configure Operation

Below shows the procedure to enable the FPGA configuration from Flash. Users can

select one boot image between factory image and user image.

1. Make sure the two default FPGA configurations data has been stored in the CFI

flash.

2. Set the FPGA configuration mode to FPPx16 mode by setting SW1 MSEL[2:0] as

000 as shown in Figure 4-1.

3. Specify the configuration of the FPGA using the default Factory Configuration

Image or User Configuration Image by setting SW1.4 according to Figure 4-2.

When the switch is in position “1”, the factory image is used when the system

boots. When the switch is in position “0”, user image is used when the system

boots.

4. Power on the FPGA board or press the MAX_RST button if board is already

A

56

powered on,

5. When the configuration is completed, the green Configure Done LED will light. If

there is an error, the red Configure Error LED will light.

Figure 4-1 MSEL[2:0]=000

Figure 4-2 Configuration Image Selection

4.2 CFI Flash Memory Map

The TR10a-HL2 has one 1-Gbit, 16-bit data width, CFI compatible synchronous flash

device for non-volatile storage of the FPGA configuration data, user Nios II code, and

user data. Both MAX V CPLD and Stratix 10 GX FPGA can access this Flash device.

57

MAXV CPLD accesses flash for FPP x16 configuration of the FPGA at power-on and

board reset events. It uses the PFL-II Mega function. Arria10 10 GX FPGA access to

the flash memory's user space is done by Nios II.

Table 4-1 shows the memory map for the on-board flash. This memory provides

non-volatile storage for two FPGA bit-streams and Nios II Program, users data, as well

as FPL option bits for PFL II configuration bits and board information. For the factory

default code to run correctly and update designs in the user memory, this memory map

address must not be altered.

Table 4-1 Flash Memory Map (Byte Address)

Block Description Size(KB) Address Range

Factory Board Information 128 0x00010000 – 0x0002FFFF

PFL option bits 64 0x00030000 – 0x0003FFFF

Factory hardware 44,032 0x00040000 – 0x02B3FFFF

User hardware 44,032 0x02B40000 – 0x0563FFFF

Factory software 8,192 0x05640000 – 0x05E3FFFF

User software and data 34,560 0x05E40000 – 0x07FFFFFF

The Factory Board Information stores the Manufacture Serial Number of the FPGA

board. The Serial Number is a 13 digital number with format mmmmmmmm-nnnn.

Users can find the number on the serial number sticker on the FPGA board.

The PFL option bits contains the image location of the Factory hardware and User

hardware, so the PLF II IP in the MAX V CPLD can know where to find the FPGA

configuration data. If developers erase all flash content, please ensure that the PFL

option is reprogrammed with the FPGA configuration data.

For user’s application, the User hardware must be stored with start address

0x02B40000, and the user’s software is suggested to be stored with start address

0x05E40000. Users also can overwrite the Factory hardware and Factory software

based on their application. Factory hardware must be stored with start address

0x00040000, and the Factory software should be stored with start address

0x05640000. We strongly recommend users to use the batch file in the

Flash_Restored folder to write the hardware and software data into the CFI-Flash.

58

4.3 Flash Example Designs

There are four flash example designs and one programming batch folder in the

Demonstration folder under the System CD as shown in Table 4-2.

Table 4-2 Flash Example Design

Example Folder Description

Flash_Programming This is the flash programming design. It is used to write

data into FLASH by a Quartus Programmmer.

Flash_Factory A simple example design. Its FPGA configure data and

Nios II codes are stored in the Factory Image Area.

Flash_User A simple example design. Its FPGA configure data and

Nios II codes are stored in the User Image Area.

Flash_Tool A Nios II program shows how to access flash content.

Flash_Restored A batch file used for to programming Flash_Factory and

the Flash_User project into CFI Flash.

Figure 4-3 shows the relationship between the three examples –

Flash_Programming, Flash_Factory and Flash_User. The Flash_Programming

example is used to write data into the CFI Flash on the FPGA Board. The

Flash_Factory and Flash_User are simple designs with Nios II processor. These two

designed are written into CFI-Flash so they are selected to configure the FPGA when

the FPGA is powered on.

Figure 4-3 Relationship between three flash examples

59

The Flash_Tool is designed to show how to access flash via the Nios II processor. The

design shows how to erase flash and read flash content.

4.4 Flash_Programming Example

The Flash_Programing project is designed to program CFI flash by a Quartus

Programmer. In the project, Intel Parallel Flash Loader II IP is used to program the

CFI-Flash. Figure 4-4 shows the Generic Setting in the IP. “Flash Programming”

operation mode is used, and “CFI Parallel Flash” is selected. Figure 4-5 shows the

Flash Interface Setting. “CFI 1 Gbit” is selected. The DE10-Pro.sof generated by this

program is used in the flash programming batch files located in the Flash_Restored

Folder.

Figure 4-4 General Setting in PFL II IP

Figure 4-5 Flash Interface Setting in PFL II IP

60

4.5 Flash_Factory Example

The Flash_Factory is designed to show how to create a Nios II code which is booted

from the Factory Software location in the CFI Flash when the board is powered on.

This project’s FPGA configuration data and Nios II code are stored in the Factory Hard

area and Factory Software area of the CFI Flash when the FPGA board is shipped.

To develop this kind of boot code, first, developers need to include the Tri-State

Conduit Bridge and the Generic Tri-State Controller in the Platform Designer

(formerly Qsys) to implement the flash controller function, and connect the Nios II

processor’s data bus and instruction bus to the flash controller as shown in Figure

4-6 . Then, specify the Factory Software Location 0x05640000 as Reset Vector in the

Nios II Processor component as shown in Figure 4-7 . Finally, developers need to

uncheck the allow_code_at_reset and enable_alt_load options in the BSP editor

under of Nios II IDE tool (Nios II Software Builder Tools for Eclipse) as shown in Figure

4-8 .

Figure 4-6 Flash Controller Settings in Platform Designer (formerly Qsys)

61

Figure 4-7 Factory Software Reset Vector Settings for NIOS II Processor

Figure 4-8 BSP Editor in Nios II IDE

4.6 Flash_User Example

The Flash_User project is similar with the above Flash_Factory example code. This

project’s FPGA configuration data and Nios II code are stored in the User Hard area

and User Software area when the FPGA board is shipped.

The major difference between the Flash_User and Flash_Factory is the Reset Vector

address in the Nios II processor component and the LED control code in Nios II

program. The User Software Location 0x05E40000 is used as Reset Vector as shown

in Figure 4-9 .

62

Figure 4-9 User Software Reset Vector Settings for NIOS II Processor

4.7 Flash_Tool Example

This example show how the Nios II program accesses the FLASH. Figure 4-10

shows a screenshot of the Flash_Tool menu shown under Nios II terminal.

Figure 4-10 Screenshot of Flash_Tool menu

The tools provide the following functions:

 Show CFI Flash Size

 Show Option bits used by FPP x16 Configuration

 Read Serial Number from the CFI Flash

63

 Erase Serial Number to the CFI flash

 Erase option bits used by FPP x16

 Erase whole flash

4.8 Programming Batch File

The Flash_Restored folder includes batch files to program the Factory image and

User image into the CFI flash. Figure 4-11 shows the contents of the Flash_Restored

folder. The factory subfolder includes the .sof & .elf files generated by the

Flash_Factory project. The user subfolder includes the .sof & .elf files generated by

the Flash_User project. TR10a_HL2.sof is generated by the Flash_Programming

project.

Figure 4-11 Flash_Restored folder content

The flash_program.bat is the top batch file for flash programming. The batch file will

configure the FPGA with TR10a_HL2.sof (Parallel Flash Loader II IP) and launch

flash_program.sh Nios II command batch file to perform the following tasks:

1. Use Nios II utilities elf2flash and nios2-elf-objcopy to convert Factory Nios II

code and User Nios II code to factory_sw.hex and user_sw.hex, respectively.

2. Use quartus_cpf utility according to a given configuration file flash.cof to merger

all files (factory_sw.hex, user_sw.hex, factory .sof file, user .sof file, and option bit)

into a single file flash.pof.

3. Use jtagconfig utility to adjust jtag speed.

4. Use quartus_pgm utility to program flash with flash.pof.

Developers can copy their .sof & .efl files into the factory folder or the user folder, and

64

launch the flash_program.bat to program their code into the CFI-Flash.

4.9 Restore Factory Settings

This section describes how to restore the original Factory image and User image into

the flash memory device on the FPGA development board. A programming batch file

located in the Flash_Restored folder is used to restore the flash content. Performing

the following instructions can restore the flash content:

1. Make sure the Nios II EDS and USB-Blaster II driver are installed.

2. Make sure the FPGA board and PC are connected with an USB Cable.

3. Power on the FPGA board.

4. Copy the “Demonstrations/Flash_Restored” folder under the CD to your PC’s

local drive.

5. Execute the batch file flash_program.bat to start flash programming.

After restoring the flash, perform the following procedures to test the restored boot

code.

1. Power off the FPGA Board.

2. Set FPGA configuration mode as AVSTx8 Mode by setting S1 MSEL[2:0] to

000.

3. Specify configuration of the FPGA to Factory Hardware by setting the

FACTORY_LOAD dip in SW1.4 to the ‘1’ position.

4. Power on the FPGA Board, and the Configure Done LED D7 should light up.

The batch file converts the Factory and User .sof/.elf and PFL option bit into a

flash.pof file and use Quartus Programmer to program the CFI-Flash with the

generated flash.pof. The factory subfolder includes TR10a_HL2.sof and

NIOS_APP.elf files generated by Flash_Factory project, and the user subfolder

includes TR10a_HL2.sof and NIOS_APP.elf files generated by Flash_User project.

The TR10a_HL2.sof under the Flash_Restored folder is used to program flash by

Quartus Programmer.

65

Chapter 5

Peripheral Reference Design

his chapter introduces TR10a-HL2 peripheral interface reference designs. It

mainly introduces Si5340 chip which is a programmable clock generator. We

provide two ways (Pure RTL IP and NIOS/Qsys System) respectively to show

how to control Si5340 to output desired frequencies, as well as how to control the fan

speed. The source codes and tool of these examples are all available on the System

CD.

5.1 Board Protection

This section introduces a Terasic Temperature Monitor IP which can be used to monitor

board temperature and raise an alert when the FPGA temperature reaches the

specified threshold. Figure 5- 1 shows the block diagram for this demonstration. The

User Logic keeps LED blinking to indicate the monitor status is normal. This function

can be enabled or disabled through the enable pin. Alert Temperature is set to 80°C by

default. The measured FPGA temperature is displayed on the four LEDs located at

PCie bracket. If the FPGA temperature exceeds 80°C, the alert is triggered. It would

cause the User Logic to be disabled and the LED will be turned off.

Figure 5- 1 Block Diagram of Temperature Monitor (!!! Need update by nina)

T

66

 Temperature Monitor IP

The temperature Monitor IP is called as Temperature_Monitor. Table 5- 1 shows the

interface of the Temperature_Monitor IP. Users need to provide 50 MHz clock signal for

this IP and connect the I2C bus to the temperature chip. Users also need to specify the

temperature threshold through the Alert_Temperature. If the measured FPGA

temperature exceeds the threshold specified by Alert_Temperature, the Alert signal will

be pulled high. Users need to turn off the board immediately to avoid any damage to

the FPGA.

Table 5- 1 Temperature_Monitor Interface

Port Direction Description

iClk50 input Provide 50 MHz clock signal to the IP

TEMP_I2C_SCL output I2C SCL pin for Temperature Sensor

TEMP_I2C_SDA In/out I2C SDA pin for Temperature Sensor

Alert_Temperature[9:0] input

Set alter temperature in degree C.

Typically 80 is recommended. Do NOT

exceed 95.

Alert output

High active. When FPGA temperature

exceeds the threshold specified by

Alert_temperature, the alert pin will be

pulled high.

Note the Alert signal will never be pulled

low once it is pulled except when FPGA is

reconfigured.

.Temp_Detected output

Optional Interface. This interface is

reserved to provide current measured

FPGA temperature.

 Demonstration File Locations

 Hardware project directory: Board_Protection

 Bitstream used: Board_Protection.sof

 Demo batch file : Board_Protection\demo_batch\test.bat

 Demonstration Setup and Instructions

67

 Make sure Quartus Prime is installed on your PC.

 Power on the FPGA board.

 Use the USB Cable to connect your PC and the FPGA board and install USB

Blaster II driver if necessary.

 Execute the demo batch file “test.bat” under the batch file folder,

Board_Protection\demo_batch.

 After FPGA is configured, the four user LEDs will blink. The measured

temperature will be displayed by the four bracket LEDs as defined in Table 5-1.

 If the FPGA temperature exceed 80s degree, the LEDs will stop blinking. For test,

please modify the Alert_Temperature to a lower value to so the measured

temperature value can exceed the temperature specified by Alert_Temperature

the in finally.

Table 5-1 Bracket LED indication for Temperature

Temperature

Bracket LED

1: LED Lighten

0: LED Un-lighten

>= 100 1111

>= 95 1110

>= 90 1101

>= 85 1100

>= 80 1011

>= 75 1010

>= 70 1001

>= 65 1000?

>= 60 0111

>= 55 0101

>= 50 0101

>= 45 0100

>= 40 0011

>= 35 0010

< 35 0001

68

5.2 Configure Si5340A/B in RTL

There are two Silicon Labs Si5340 clock generators on TR10a-HL2 FPGA board can

provide adjustable frequency reference clock (See Figure 5-1) for QSFP and QDRII

interfaces, etc. Each Si5340 clock generator can output four groups differential

frequencies from 100Hz ~ 712.5Mhz though I2C interface configuration. This chapter

will show you how to use FPGA RTL IP to configure each Si5340 PLL and generate

users desired output frequency to each peripheral. In the following instruction, the two

Si5340 chips will be named as Si5340A and Si5340B respectively.

Figure 5-1 Si5340 Clock Generators

 Creating Si5340 Control IP

The Si5340 control IP is located in the folder:

\Demonstration\si5340_control_ip”.

Also, System Builder tool (locate in System CD) can be used to help users to set

Si5340 to output desired frequencies, and generate a Quartus project with control IP. In

System Builder window, when checking the boxes of QSFP and QDRII interfaces,

Si5340 corresponding output channels will become available and users can select

desired frequencies. For example, when checking QSFP+ A box (See Figure 5-2),

SI5340A QSFPA_REFCLK_P/N can provide six frequencies from 100Mhz to

644.5312Mhz for users selecting.

As shown in Figure 5-3, if all the receiving Si5340 reference clock interface boxes are

checked, then, every frequency channel of the two Si5340 chips is controllable by

users.

69

Figure 5-2 Enable Si5340A clock on System Builder

Figure 5-3 Enable Si5340A and Si5340B clock on System Builder

Click "Generate" button, then, open the Quartus Project generated by System Builder,

the control IPs for Si5340A and Si5340B can be found in the top level file.

//===

// Configure SI5340A

//===

70

`define SI5340A_POWER_DOWN 3'h0

`define SI5340A_644M53125 3'h1

`define SI5340A_322M265625 3'h2

`define SI5340A_312M5 3'h3

`define SI5340A_250M 3'h4

`define SI5340A_156M25 3'h5

`define SI5340A_125M 3'h6

`define SI5340A_100M 3'h7

wire si5340a_controller_start;

wire si5340a_config_done;

assign si5340a_controller_start = ~BUTTON[0];

si5340a_controller si5340a_controller(

 .iCLK(CLK_50_B2F),

 .iRST_n(CPU_RESET_n),

 .iStart(si5340a_controller_start),

 .iPLL_OUT0_FREQ_SEL(`SI5340A_644M53125),//QSFP-A

 .iPLL_OUT1_FREQ_SEL(`SI5340A_644M53125),//QSFP-B

 .iPLL_OUT2_FREQ_SEL(`SI5340A_644M53125),//QSFP-C

 .iPLL_OUT3_FREQ_SEL(`SI5340A_644M53125),//QSFP-D

 .I2C_CLK(SI5340A_I2C_SCL),

 .I2C_DATA(SI5340A_I2C_SDA),

 .oPLL_REG_CONFIG_DONE(si5340a_config_done)

);

assign SI5340A_OE_n = 1'b0;

assign SI5340A_RST_n = CPU_RESET_n;

//===

// Configure SI5340B

//===

`define REFCLK_QDR275 4'h0

`define REFCLK_QDR250 4'h1

`define REFCLK_QDR225 4'h2

71

wire si5340b_controller_start;

wire si5340b_config_done;

assign si5340b_controller_start = ~BUTTON[0];

si5340b_controller si5340b_controller(

 .iCLK(CLK_50_B2F),

 .iRST_n(CPU_RESET_n),

 .iStart(si5340b_controller_start),

 .iPLL_OUT_FREQ_SEL(`REFCLK_QDR275),

 .I2C_CLK(SI5340B_I2C_SCL),

 .I2C_DATA(SI5340B_I2C_SDA),

 .oPLL_REG_CONFIG_DONE(si5340b_config_done)

);

assign SI5340B_OE_n = 1'b0;

assign SI5340B_RST_n = CPU_RESET_n;

If the output frequency doesn’t need to be modified, users can just add their own User

Logic and compile it, and then, Si5340 can output desired frequencies. At the same

time, System Builder will set Clock constrain according user’s preset frequency in a

SDC file (as shown in Figure 5-4).

Figure 5-4 SDC file created by System Builder

72

 Using Si5340 control IP

Table 5-2 lists the instruction ports of Si5340 Controller IP.

Table 5-2 Si5340 Controller Instruction Ports

Port Direction Description

iCLK input System Clock (50Mhz)

iRST_n input
Synchronous Reset (0: Module

Reset, 1: Normal)

iStart input
Start to Configure（positive edge

trigger）

iPLL_OUTX_FREQ_SEL input
Setting Si5340 Output Channel

Frequency Value

oPLL_REG_CONFIG_DONE output

Si5340 Configuration status (0:

Configuration in Progress, 1:

Configuration Complete)

I2C_DATA inout I2C Serial Data to/fromSi5340

I2C_CLK output I2C Serial Clock to Si5340

As shown in Table 5-3 and Table 5-4, both two Si5340 control IPs have preset several

output frequency parameters, if users want to change frequency, users can fill in the

input port " iPLL_OUTX_FREQ_SEL" with a desired frequency value and recompile

the project. For example, in Si5340A control IP, change

.iPLL_OUT1_FREQ_SEL(`SI5340A_125M),

to

.iPLL_OUT1_FREQ_SEL(`SI5340A_156M25),

Recompile project, the Si5340A OUT2 channel (for QSFP-C) output frequency will

change from 125Mhz to 156.25Mhz.

Table 5-3 Si5340A Controller Frequency Setting

iPLL_OUTX_FREQ_SEL

MODE Setting
Si5340A Channel Clock Frequency(MHz)

3'b000 Power Down

3'b001 644.53125

73

3'b010 322.26

3'b011 312.25

3'b100 250

3'b101 156.25

3'b110 125

3'b111 100

Table 5-4 Si5340B Controller Frequency Setting

iPLL_OUT_FRE

Q_SEL MODE

Setting

QDRII

Frequency(MHz)

4'b0000 275

4'b0001 250

4'b0010 225

Users can also dynamically modify the input parameters, and input a positive edge

trigger for “iStart”, then, Si5340 output frequency can be modified.

After the manually modifying, please remember to modify the corresponding frequency

value in SDC file.

 Modify Clock Parameter For Your Own Frequency

If the Si5340 control IP build-in frequencies are not users’ desired, users can refer to

below steps to modify control IP register parameter settings to modify the IP to output a

desired frequency.

1. Firstly, download ClockBuilder Pro Software (See Figure 5-5), which is

provided by Silicon Labs. This tool can help users to set the Si5340’s output

frequency of each channel through the GUI interface, and it will automatically

calculate the Register parameters required for each frequency. The tool

download link:

http://url.terasic.com/clockuilder_ro_oftware

http://url.terasic.com/clockuilder_ro_oftware

74

 Figure 5-5 ClockBuilder Pro Wizard

2. After the installation, select Si5340, and configure the input frequency and

output frequency as shown in Figure 5-6.

Figure 5-6 Define Output Clock Frequencies on ClockBuilder Pro Wizard

75

3. After the setting is completed, ClockBuider Pro Wizard generates a Design

Report(text), which contains users setting frequency corresponding register

value (See Figure 5-7).

Figure 5-7 Open Design Report on ClockBuilder Pro Wizard

4. Open Si5340 control IP sub-module “si5340a_i2c_reg_controller.v “ as shown

inFigure5-8, refer Design Report parameter to modify sub-module

corresponding register value (See Figure 5-9).

`

Figure 5-8 Sub-Module file “si5340a_i2c_reg_controller.v”

76

Figure 5-9 Modify Si5340 Control IP Base on Design Report

After modifying and compiling, Si5340 can output new frequencies according to the

users’ setting.

Note :

1. No need to modify all Design Report parameters in

si5340a_i2c_reg_controller.v/si5340b_i2c_reg_controller.v, users can ignore

parameters which have nothing to do with the frequency setting

2. After the manually modifying, please remember to modify clock constrain

setting in .SDC file

5.3 Nios II control for SI5340 /Temperature

/ Power

This demonstration shows how to use the Nios II processor to program two

programmable oscillators (Si5340A and Si5340B) on the FPGA board, how to measure

the power consumption based on the built-in power measure circuit. The

demonstration also includes a function of monitoring system temperature with the

on-board temperature sensor.

77

 System Block Diagram

Figure 5-10 shows the system block diagram of this demonstration. The system

requires a 50 MHz clock provided from the board. The four peripherals (including

temperature sensor TMP441, Si5340A/B, and power monitor LTC2945) are all

controlled by Nios II through the PIO controller, and all of them are programmed

through I2C protocol which is implemented in the C code. The I2C pins from chip are

connected to Qsys System Interconnect Fabric through PIO controllers. The Nios II

program toggles the PIO controller to implement the I2C protocol. The Nios II program

is running in the on-chip memory.

Figure 5-10 Block diagram of the Nios II Basic Demonstration

The program provides a menu in nios-terminal, as shown in Figure 5-11 to provide an

interactive interface. With the menu, users can perform the test for the temperatures

sensor, external PLL and power monitor. Note, pressing ‘ENTER’ should be followed

with the choice number.

78

Figure 5-11 Menu of Demo Program

In temperature test, the program will display local temperature and remote temperature.

The remote temperature is the FPGA temperature, and the local temperature is the

board temperature where the temperature sensor located.

A power monitor IC (LTC2945) embedded on the board can monitor Arria10 real-time

current and power. This IC can work out current/power value as multiplier and divider

are embedded in it. There is a sense resistor R96 (0.006 Ω) for LTC2945 in the circuit,

when power on the TR10a-HL2 board, there will be a voltage drop (named ∆SENSE

Voltage) on R96. Based on sense resistors, the program of power monitor can

calculate the associated voltage, current and power consumption from the LTC2945

through the I2C interface. Please note the device I2C address is 0xD4.

In the external PLL programming test, the program will program the PLL first, and

subsequently will use TERASIC QSYS custom CLOCK_COUNTER IP to count the

clock count in a specified period to check whether the output frequency is changed as

configured. To avoid a Quartus II compilation error, dummy transceiver controllers are

created to receive the clock from the external PLL. Users can ignore the functionality of

the transceiver controller in the demonstration. For Si5340A/B programming, Please

note the device I2C address are 0xEE. The program can control the Si5340A to

configure the output frequency of QSFPA/B/C/D REFCLK, or control the Si5340B to

configure the output frequency of QDRIIA/B/C/D/E/F REFCLK according to your

choice.

 Demonstration File Locations

 Hardware project directory: NIOS_BASIC_DEMO

 Bitstream used: NIOS_BASIC_DEMO.sof

 Software project directory: NIOS_BASIC_DEMO \software

 Demo batch file : NIOS_BASIC_DEMO\demo_batch\NIOS_BASIC_DEMO.bat,

79

NIOS_BASIC_DEMO.sh

 Demonstration Setup and Instructions

 Make sure Quartus II and Nios II are installed on your PC.

 Power on the FPGA board.

 Use the USB Cable to connect your PC and the FPGA board and install USB

Blaster II driver if necessary.

 Execute the demo batch file “NIOS_BASIC_DEMO.bat” under the batch file folder,

NIOS_BASIC_DEMO\demo_batch.

 After the Nios II program is downloaded and executed successfully, a prompt

message will be displayed in nios2-terminal.

 For temperature test, please input key ‘0’ and press ‘Enter’ in the nios-terminal, ,

as shown inFigure 5-12.

 For power monitor test, please input key ‘1’ and press ‘Enter’ in the nios-terminal,

the Nios II console will display the current values of voltage, current and power as

shown in Figure 5-13.

 For programmable PLL Si5340A test, please input key ‘2’ and press ‘Enter’ in the

nios-terminal first, then select the desired output frequency of QSFPA/B/C/D

REFCLK, as shown in Figure 5-14.

 For programmable PLL Si5340B test, please input key ‘3’ and press ‘Enter’ in the

nios-terminal first, then select the desired output frequency of QDRIIA/B/C/D/E/F

REFCLK, as shown in Figure 5-15.

Figure 5-12 Temperature Demo

80

Figure 5-13 power monitor Demo

Figure 5-14 Si5340A Demo

81

Figure 5-15 Si5340B Demo

5.4 Fan Speed Control

This demo helps users quickly understand how to set the MAX6650 chip from the

FPGA to control the fansink. The MAX6650 chip can set or retrieve the RPM of the

fansink. It can also monitor if there is any unexpected error and determine which type

of error it is. The following section will save lots of time for the development of user

application.

 System Block Diagram

Figure 5-16 shows the system block diagram of this demo. It is necessary to configure

the MAX6650 chip prior upon the initialization of fansink control. The MAX6650 chip

uses standard I2C protocol for communication. The functions I2C_Config and

I2C_Bus_Controller set and monitor the RPM of the fansink, respectively. A pre-scaler

is used as frequency divider for the clock frequency of I2C. Users need to calculate the

frequency based on the equations from the datasheet to control the RPM of the fansink.

82

There are three equations in the datasheet and this demo uses one of them. For other

equations, please refer to the datasheet MAX6650-MAX6651.pdf in the system CD.

The Switch[0] controls the RPM in this demo. When the Switch[0] is set to 0, the speed

is around 2000 RPM. The speed would reach about 5000 RPM if the Switch[0] is set to

1. It would take 10 ~ 30 secs as the buffer time for the conversion. If an error is

detected, the LED would lit. Users need to press KEY[1] to reset the LED by turn it off.

Figure 5-16 Block diagram of the fan speed control demonstration

 Alarm Status Register Bit Assignments

When the fan is abnormal, the LED will lit. Users can refer to Table 5-5 and get a better

understanding about the malfunction of the fansink accordingly. The status of BIT 4 ~ 7

can be ignored because BIT 4 is for MAX6651 only and BIT 5 ~ 7 are always low.

BIT NAME
POR(DEFAULT)S

TATE
FUNCTION

7(MSB) to 5 --- 0 Always 0

4
GPIO2

(MAX6651 only)
0

GPIO2 Alarm. Set when GPIO2

is low (MAX6651 only)

3(LED[3]) GPIO1 0
GPIO1 Alarm. Set when GPIO1

is low

2(LED[2]) TACH 0 Tachometer Overflow Alarm

83

Table 5-5 Alarm-Enable Resgister Bit Masks

 Design Tools

 64-bit Quartus II v16.0.2

 Demonstration Source Code

 Project Directory: Demonstration\Fan

 Bit Stream: TR10A_HL_golden_top.sof

 Demonstration Batch File

Demo Batch File Folder: \Fan\demo_batch

The demo batch file includes following files:

 Batch File: test_ub2.bat

 FPGA Configure File: TR10A_HL_golden_top.sof

 Demonstration Setup

 Make sure Quartus II is installed on the host PC.

 Connect the TR10a-HL2 and the host PC via USB cable. Install the USB-Blaster II

driver if necessary.

 Power on the FPGA Board.

 Execute the demo batch file “test_ub2.bat” under the batch file folder

\Fan\demo_batch.

 When SW0.1is set to 0, the RPM would slowly be adjusted to ~2000. When SW[0]

is set to 1, the RPM would slowly be adjusted to ~5000.

1(LED[1]) MIN 0 Minimum Output Level Alarm

0(LED[0]) MAX 0 Maximum Output Level Alarm

84

Chapter 6

Memory Reference Design

his chapter will show two examples which use the Altera Memory IP to perform

memory test functions. The source codes of these examples are all available

on the FPGA System CD. These three examples are:

 QDRII+ SRAM Test: Full test of the six banks of QDRII+ SRAM

 QDRII+ SRAM Test by Nios II: Full test of six banks of QDRII+ SRAM with

Nios II

Note. 64-Bit Quartus16.0.2 or later is strongly recommended for compiling these

projects.

6.1 QDRII+ SRAM Test

QDR II/QDR II+ SRAM devices enable you to maximize memory bandwidth with

separate read and write ports. The memory architecture features separate read and

write ports operating twice per clock cycle to deliver a total of four data transfers per

cycle. The resulting performance increase is particularly valuable in

bandwidth-intensive and low-latency applications.

This demonstration utilizes six QDRII+ SRAMs on the FPGA board. It describes how to

use Altera’s “Arria 10 External Memory Interfaces” (Arria 10 EMIF) IP to implement a

memory test function.

 Function Block Diagram

Figure 6-1 shows the function block diagram of the demonstration. The six QDRII+

SRAM controllers are configured as a 72Mb controller. The QDRII+ SRAM IP

generates a 550MHz clock as memory clock and a half-rate system clock, 275MHz, for

the controllers.

T

85

Figure 6-1 Function Block Diagram of the QDRII+ SRAM x4 Demonstration

The QDRIIA/B/C/D/E/F_REFCLK is generated from Si5340B which configured

275MHz for QDRII+ 550MHz by Clock Config module. QDRIIA/B/C/D/E/F_REFCLK

has no default frequency output so that they must be configured first.

In this demonstration, each QDRII+ SRAM has its own PLL, DLL and OCT resources.

The Arria 10 EMIF QDRII IP uses a Hard PHY and a soft Controller. The Hard PHY

capable of performing key memory interface functionality such as read/write leveling,

FIFO buffering to lower latency and improve margin, timing calibration, and on-chip

termination.

The Avalon bus read/write test (RW_test) modules read and write the entire memory

86

space of each QDRII+ SRAM through the Avalon interface of each controller. In this

project, the RW_test module will first write the entire memory and then compare the

read back data with the regenerated data (the same sequence as the write data). Test

control signals for four QDRII+ SRAMs will generate from CPU_RESET_n and four

LEDs will indicate the test results of four QDRII+ SRAMs.

 Altera QDRII and QDRII+ SRAM Controller with UniPHY

To use Altera QDRII+ SRAM controller, users need to perform the following steps in

order:

1. Create correct pin assignments for QDRII+.

2. Setup correct parameters in QDRII+ SRAM controller dialog.

 Design Tools

 Quartus II 16.0.2

 Demonstration Source Code

 Project directory: QDRII_x6_Test_550MHz

 Bit stream used: TR10A_HL_golden_top.sof

 Demonstration Batch File

Demo Batch File Folder: QDRIIx4_Test\demo_batch

The demo batch files include the followings:

 Batch file for USB-Blaster II: test.bat,

 FPGA configuration file: TR10A_HL_golden_top.sof

 Demonstration Setup

 Make sure Quartus II is installed on your PC.

 Connect the USB cable to the FPGA board and host PC. Install the USB-Blaster II

driver if necessary.

 Power on the FPGA Board.

 Execute the demo batch file “test_ub2.bat” under the batch file folder,

QDRII_x6_Test_550MHz\demo_batch.

 Press CPU_RESET_n of the FPGA board to start the verification process. When

CPU_RESET_n is held down, all the LEDs will be turned off. All LEDs should turn

back on to indicate test passes upon the release of CPU_RESET_n.

 If any LED is not lit up after releasing CPU_RESET_n, it indicates the

corresponding QDRII+ SRAM test has failed. Table 6-1 lists the matchup for the

87

four LEDs.

 Press CPU_RESET_n again to regenerate the test control signals for a repeat

test.

Table 6-1 LED Indicators

NAME Description

LED0 QDRII+ SRAM(A) test result

LED1 QDRII+ SRAM(B) test result

LED2 QDRII+ SRAMI test result

LED3 QDRII+ SRAM(D) test result

Bracket LED0 QDRII+ SRAMI test result

Bracket LED1 QDRII+ SRAM(F) test result

6.2 QDRII+ SRAM Test by Nios II

This demonstration hardware and software designs are provided to illustrate how to

perform QDRII+ SRAM memory access in QSYS. We describe how the Altera’s “Arria

10 External Memory Interfaces” IP is used to access the six QDRII+ SRAM on the

FPGA board, and how the Nios II processor is used to read and write the SRAM for

hardware verification. The QDRII+ SRAM controller handles the complex aspects of

using QDRII+ SRAM by initializing the memory devices, managing SRAM banks, and

keeping the devices refreshed at appropriate intervals.

 System Block Diagram

Figure 6-2 shows the system block diagram of this demonstration. The QSYS system

requires one 50 MHz and six 550MHz clock source. The six 550MHz clock source is

provided by SI5340B clock generator on the board. Si5340B Config Controller is used

to configure the SI5340B to generate the required clock. The six 550MHz clock are

used as reference clocks for the QDRII+ controllers. There are six QDRII+ Controllers

are used in the demonstrations. Each controller is responsible for one QDRII+ SRAM.

Each QDRII+ controller is configured as a 8 MB QDRII+ controller. Nios II processor is

used to perform memory test. The Nios II program is running in the On-Chip Memory. A

PIO Controller is used to monitor buttons status which is used to trigger starting

memory testing.

88

Figure 6-2 Block diagram of the QDRII+ Demonstration

The system flow is controlled by a Nios II program. First, the Nios II program writes test

patterns into the whole 8 MB of SRAM. Then, it calls Nios II system function,

alt_dcache_flush_all(), to make sure all data has been written to SRAM. Finally, it

reads data from SRAM for data verification. The program will show progress in

JTAG-Terminal when writing/reading data to/from the SRAM. When verification

process is completed, the result is displayed in the JTAG-Terminal.

 Design Tools

 Quartus II 16.0.2

 Nios II Eclipse 16.0.2

 Demonstration Source Code

 Quartus Project directory: NIOS_QDRII_x6_550

 Nios II Eclipse: NIOS_QDRII_x6_550\software

 Nios II Project Compilation

 Nios II Project Compilation

Before you attempt to compile the reference design under Nios II Eclipse, make sure

the project is cleaned first by clicking ‘Clean’ from the ‘Project’ menu of Nios II Eclipse.

89

 Demonstration Batch File

Demo Batch File Folder: NIOS_QDRII_x6_550\demo_batch

The demo batch file includes following files:

 Batch File for USB-Blaseter II: test.bat, test.sh

 FPGA Configure File: NIOS_QDRII_x6_550.sof

 Nios II Program: TEST_QDRII.elf

 Demonstration Setup

Please follow below procedures to setup the demonstartons.

 Make sure Quartus II and Nios II are installed on your PC.

 Make sure both QDRII+ SRAMs are installed on the FPGA board.

 Power on the FPGA board.

 Use USB Cable to connect PC and the FPGA board and install USB Blaster II

driver if necessary.

 Execute the demo batch file “test.bat” under the folder

“NIOS_QDRII_x6_550\demo_batch”.

 After Nios II program is downloaded and executed successfully, a prompt

message will be displayed in nios2-terminal.

 Press Button3~Button0 of the FPGA board to start SRAM verify process. Press

Button0 for continued test.

 The program will display progressing and result information, as shown in Figure

6-3.

90

Figure 6-3 Progress and Result Information for the QDRII+ Demonstration

91

Chapter 7

PCI Express Reference Design

CI Express is commonly used in consumer, server, and industrial applications,

to link motherboard-mounted peripherals. From this demonstration, it will

show how the PC and FPGA communicate with each other through the PCI

Express interface. Arria 10 Hard IP for PCI Express with Avalon-MM DMA IP is used in

this demonstration. For detail about this IP, please refer to Altera document

ug_a10_pcie_avmm_dma.pdf.

7.1 PCI Express System Infrastructure

Figure 7-1 shows the infrastructure of the PCI Express System in this demonstration. It

consists of two primary components: FPGA System and PC System. The FPGA

System is developed based on Arria 10 Hard IP for PCI Express with Avalon-MM DMA.

The application software on the PC side is developed by Terasic based on Altera’s

PCIe kernel mode driver.

P

https://www.altera.com/en_US/pdfs/literature/ug/ug_a10_pcie_avmm_dma.pdf

92

Figure 7-1 Infrastructure of PCI Express System

7.2 PC PCI Express Software SDK

The FPGA System CD contains a PC Windows based SDK to allow users to develop

their 64-bit software application on Windows 7/Window XP 64-bit. The SDK is located

in the “CDROM \demonstrations\PCIe_SW_KIT” folder which includes:

 PCI Express Driver

 PCI Express Library

 PCI Express Examples

The kernel mode driver assumes the PCIe vender ID (VID) is 0x1172 and the device ID

(DID) is 0xE003. If different VID and DID are used in the design, users need to modify

the PCIe vender ID (VID) and device ID (DID) in the driver INF file accordingly.

The PCI Express Library is implemented as a single DLL named

“TERASIC_PCIE_AVMM.DLL”.

This file is a 64-bit DLL. With the DLL is exported to the software API, users can easily

93

communicate with the FPGA. The library provides the following functions:

 Basic data read and write

 Data read and write by DMA

For high performance data transmission, Altera AVMM DMA is required as the read

and write operations are specified under the hardware design on the FPGA.

7.3 PCI Express Software Stack

Figure 7-2 shows the software stack for the PCI Express application software on 64-bit

Windows. The PCI Express driver incorporated in the DLL library is called

“TERASIC_PCIE_AVMM.dll”. Users can develop their applications based on this DLL.

The “altera_pcie_win_driver.sys” kernel driver is provided by Altera.

Figure 7-2 PCI Express Software Stack

94

 Install PCI Express Driver on Windows

The PCIe driver is locate in the folder:

CDROM\Demonstrations\PCIe_SW_KIT\PCIe_Driver

The folder includes the following four files:

 Altera_pcie_win_driver.cat

 Altera_pcie_win_driver.inf

 Altera_pcie_win_driver.sys

 WdfCoinstaller01011.dll

To install the PCI Express driver, please execute the steps below:

1. Install the TR10a-HL2 on the PCIe slot of the host PC

2. Make sure Altera Programmer and USB-Blaster II driver are installed

3. Execute test.bat in “CDROM\Demonstrations\PCIe_Fundamental\demo_batch”

to configure the FPGA

4. Restart windows operation system

5. Click Control Panel menu from Windows Start menu. Click Hardware and

Sound item before clicking the Device Manager to launch the Device Manager

dialog. There will be a PCI Device item in the dialog, as shown in Figure 7-3.

Move the mouse cursor to the PCI Device item and right click it to select the

Update Driver Software... item.

Figure 7-3 Screenshot of launching Update Driver Software… dialog

95

6. In the How do you want to search for driver software dialog, click Browse

my computer for driver software item, as shown in Figure 7-4

Figure 7-4 Dialog of Browse my computer for driver software

7. In the Browse for driver software on your computer dialog, click the Browse

button to specify the folder where altera_pcie_din_driver.inf is located, as

shown in Figure 7-5. Click the Next button.

Figure 7-5 Browse for driver software on your computer

96

8. When the Windows Security dialog appears, as shown Figure 7-6, click the

Install button.

Figure 7-6 Click Install in the dialog of Windows Security

9. When the driver is installed successfully, the successfully dialog will appears,

as shown in Figure 7-7. Click the Close button.

Figure 7-7 Click Close when the installation of Altera PCI API Driver is complete

97

Once the driver is successfully installed, users can see the Altera PCI API Driver

under the device manager window, as shown in Figure7-8.

Figure 7-8 Altera PCI API Driver in Device Manager

 Create a Software Application

All the files needed to create a PCIe software application are located in the directory

CDROM\demonstration\PCIe_SW_KIT\PCIe_Library. It includes the following files:

 TERASIC_PCIE_AVMM.h

 TERASIC_PCIE_AVMM.DLL (64-bit DLL)

Below lists the procedures to use the SDK files in users’ C/C++ project :

1. Create a 64-bit C/C++ project.

2. Include “TERASIC_PCIE_AVMM.h” in the C/C++ project.

3. Copy “TERASIC_PCIE_AVMM.DLL” to the folder where the project.exe is located.

4. Dynamically load “TERASIC_PCIE_AVMM.DLL” in C/C++ program. To load the

DLL, please refer to the PCIe fundamental example below.

5. Call the SDK API to implement the desired application.

Users can easily communicate with the FPGA through the PCIe bus through the

“TERASIC_PCIE_AVMM.DLL” API. The details of API are described below:

 PCIE_Open

98

Function:

Open a specified PCIe card with vendor ID, device ID, and matched card index.

Prototype:

PCIE_HANDLE PCIE_Open(

WORD wVendorID,

WORD wDeviceID,

WORD wCardIndex);

Parameters:

wVendorID:

Specify the desired vendor ID. A zero value means to ignore the vendor ID.

wDeviceID:

Specify the desired device ID. A zero value means to ignore the device ID.

wCardIndex:

Specify the matched card index, a zero based index, based on the matched verder

ID and device ID.

Return Value:

Return a handle to presents specified PCIe card. A positive value is return if the PCIe

card is opened successfully. A value zero means failed to connect the target PCIe

card.

This handle value is used as a parameter for other functions, e.g. PCIE_Read32.

Users need to call PCIE_Close to release handle once the handle is no more used.

 PCIE_Close

Function:

Close a handle associated to the PCIe card.

Prototype:

void PCIE_Close(

PCIE_HANDLE hPCIE);

Parameters:

hPCIE:
A PCIe handle return by PCIE_Open function.

Return Value:

None.

 PCIE_Read32

Function:

Read a 32-bit data from the FPGA board.

Prototype:

99

bool PCIE_Read32(

PCIE_HANDLE hPCIE,

PCIE_BAR PcieBar,

PCIE_ADDRESS PcieAddress,

DWORD * pdwData);

Parameters:

hPCIE:

A PCIe handle return by PCIE_Open function.

PcieBar:

Specify the target BAR.

PcieAddress:

Specify the target address in FPGA.

pdwData:

A buffer to retrieve the 32-bit data.

Return Value:

Return TRUE if read data is successful; otherwise FALSE is returned.

 PCIE_Write32

Function:

Write a 32-bit data to the FPGA Board.

Maximal write size is (4GB-1) bytes.

Prototype:

bool PCIE_Write32(

PCIE_HANDLE hPCIE,

PCIE_BAR PcieBar,

PCIE_ADDRESS PcieAddress,

DWORD dwData);

Parameters:

hPCIE:

A PCIe handle return by PCIE_Open function.

PcieBar:

Specify the target BAR.

PcieAddress:

Specify the target address in FPGA.

dwData:

Specify a 32-bit data which will be written to FPGA board.

Return Value:

Return TRUE if write data is successful; otherwise FALSE is returned.

100

 PCIE_DmaRead

Function:

Read data from the memory-mapped memory of FPGA board in DMA.

Maximal read size is (4GB-1) bytes.

Prototype:

bool PCIE_DmaRead(

PCIE_HANDLE hPCIE,

PCIE_LOCAL_ADDRESS LocalAddress,

void *pBuffer,

DWORD dwBufSize

);

Parameters:

hPCIE:

A PCIe handle return by PCIE_Open function.

LocalAddress:

Specify the target memory-mapped address in FPGA.

pBuffer:

A pointer to a memory buffer to retrieved the data from FPGA. The size of buffer

should be equal or larger the dwBufSize.

dwBufSize:

Specify the byte number of data retrieved from FPGA.

Return Value:

Return TRUE if read data is successful; otherwise FALSE is returned.

 PCIE_DmaWrite

Function:

Write data to the memory-mapped memory of FPGA board in DMA.

Prototype:

bool PCIE_DmaWrite(

PCIE_HANDLE hPCIE,

PCIE_LOCAL_ADDRESS LocalAddress,

void *pData,

DWORD dwDataSize

);

101

Parameters:

hPCIE:

A PCIe handle return by PCIE_Open function.

LocalAddress:

Specify the target memory mapped address in FPGA.

pData:

A pointer to a memory buffer to store the data which will be written to FPGA.

dwDataSize:

Specify the byte number of data which will be written to FPGA.

Return Value:

Return TRUE if write data is successful; otherwise FALSE is returned.

 PCIE_ConfigRead32

Function:

Read PCIe Configuration Table. Read a 32-bit data by given a byte offset.

Prototype:

bool PCIE_ConfigRead32 (

PCIE_HANDLE hPCIE,

DWORD Offset,

DWORD *pdwData

);

Parameters:

hPCIE:

A PCIe handle return by PCIE_Open function.

Offset:

Specify the target byte of offset in PCIe configuration table.

pdwData:

A 4-bytes buffer to retrieve the 32-bit data.

Return Value:

Return TRUE if read data is successful; otherwise FALSE is returned.

7.4 PCIe Design – Fundamental

The application reference design shows how to implement fundamental control and

data transfer in DMA. In the design, basic I/O is used to control the BUTTON and LED

on the FPGA board. High-speed data transfer is performed by DMA.

102

 Demonstration Files Location

The demo file is located in the batch folder:

CDROM\demonstrations\PCIe_funcdamental\demo_batch

The folder includes following files:

 FPGA Configuration File: PCIe_Fundamental.sof

 Download Batch file: test.bat

 Windows Application Software folder : windows_app, includes

 PCIE_FUNDAMENTAL.exe

 TERASIC_PCIE_AVMM.dll

 Demonstration Setup

1. Install the FPGA board on your PC as shown in Figure 7-9.

Figure 7-9 FPGA board installation on PC

2. Configure FPGA with PCIE_Fundamental.sof by executing the test.bat.

3. Install PCIe driver if necessary. The driver is located in the folder:

CDROM\Demonstration\PCIe_SW_KIT\PCIe_Driver

4. Restart Windows

5. Make sure the Windows has detected the FPGA Board by checking the Windows

Control panel as shown in Figure 7-10.

103

Figure 7-10 Screenshot for PCIe Driver

6. Goto windows_app folder, execute PCIE_FUNDMENTAL.exe. A menu will appear

as shown in Figure 7-11.

Figure 7-11 Screenshot of Program Menu

104

7. Type 0 followed by a ENTERY key to select Led Control item, then input 15 (hex

0x0f) will make all led on as shown in Figure 7-12. If input 0(hex 0x00), all led will

be turn off.

Figure 7-12 Screenshot of LED Control

8. Type 1 followed by an ENTERY key to select Button Status Read item. The button

status will be report as shown in Figure 7-13.

105

Figure 7-13 Screenshot of Button Status Report

9. Type 2 followed by an ENTERY key to select DMA Testing item. The DMA test

result will be report as shown in Figure 7-14.

106

Figure 7-14 Screenshot of DMA Memory Test Result

10. Type 99 followed by an ENTERY key to exit this test program

 Development Tools

 Quartus II 16.0

 Visual C++ 2012

 Demonstration Source Code Location

 Quartus Project: Demonstrations\PCIe_Fundamental

 Visual C++ Project: Demonstrations\PCIe_SW_KIT\PCIE_FUNDAMENTAL

 FPGA Application Design

Figure 7-15 shows the system block diagram in the FPGA system. In the Qsys, Altera

PIO controller is used to control the LED and monitor the Button Status, and the

On-Chip memory is used for performing DMA testing. The PIO controllers and the

On-Chip memory are connected to the PCI Express Hard IP controller through the

Memory-Mapped Interface.

107

Figure 7-15 Hardware block diagram of the PCIe reference design

 Windows Based Application Software Design

The application software project is built by Visual C++ 2012. The project includes the

following major files:

Name Description

PCIE_FUNDAMENTAL.cpp Main program

PCIE.c Implement dynamically load for

TERAISC_PCIE_AVMM.DLL PCIE.h

TERASIC_PCIE_AVMM.h SDK library file, defines constant and data structure

The main program PCIE_FUNDAMENTAL.cpp includes the header file “PCIE.h” and

defines the controller address according to the FPGA design.

108

The base address of BUTTON and LED controllers are 0x4000010 and 0x4000020

based on PCIE_BAR4, in respectively. The on-chip memory base address is

0x00000000 relative to the DMA controller.

Before accessing the FPGA through PCI Express, the application first calls PCIE_Load

to dynamically load the TERASIC_PCIE_AVMM.DLL. Then, it call PCIE_Open to open

the PCI Express driver. The constant DEFAULT_PCIE_VID and DEFAULT_PCIE_DID

used in PCIE_Open are defined in TERASIC_PCIE_AVMM.h.If developer change the

Vender ID and Device ID and PCI Express IP, they also need to change the ID value

define in TERASIC_PCIE_AVMM.h. If the return value of PCIE_Open is zero, it means

the driver cannot be accessed successfully. In this case, please make sure:

 The FPGA is configured with the associated bit-stream file and the host is

rebooted.

 The PCI express driver is loaded successfully.

The LED control is implemented by calling PCIE_Write32 API, as shown below:

The button status query is implemented by calling the PCIE_Read32 API, as shown

below:

The memory-mapped memory read and write test is implemented by PCIE_DmaWrite

and PCIE_DmaRead API, as shown below:

109

7.5 PCIe Design – QDRII+

The application reference design shows how to add QDRII+ Memory Controllers for six

QDRII+ SRAMs into the PCIe Quartus project based on the PCI_Fundamental Quartus

project and perform 8MB data DMA for six SRAMs. Also, this demo shows how to call

“PCIE_ConfigRead32” API to check PCIe link status.

 Demonstration Files Location

The demo file is located in the batch folder:

CDROM\demonstrations\PCIe_QDR\demo_batch

The folder includes following files:

 FPGA Configuration File: PCIe_QDR.sof

 Download Batch file: test.bat

 Windows Application Software folder : windows_app, includes

 PCIE_QDR.exe

 TERASIC_PCIE_AVMM.dll

 Demonstration Setup

1. Install the FPGA board on your PC.

2. Configure FPGA with PCIe_QDR.sof by executing the test.bat.

3. Install PCIe driver if necessary.

4. Restart Windows

5. Make sure the Windows has detected the FPGA Board by checking the Windows

Control panel.

6. Goto windows_app folder, execute PCIE_QDR.exe. A menu will appear as shown

in Figure 7-16.

110

Figure 7-16 Screenshot of Program Menu

7. Type 2 followed by a ENTERY key to select Link Info item. The PICe link

information will be shown as in Figure 7-17. Gen3 link speed and x8 link width are

expected.

111

Figure 7-17 Screenshot of Link Info

8. Type 3 followed by an ENTERY key to select DMA On-Chip Memory Test item. The

DMA write and read test result will be report as shown in Figure 7-18.

112

Figure 7-18 Screenshot of On-Chip Memory DMA Test Result

113

9. Type 4 followed by an ENTERY key to select DMA QDRII-A Memory Test item. The

DMA write and read test result will be report as shown in Figure 7-19.

Figure 7-19 Screenshot of QDRII-A Memory DAM Test Result

10. Type 5 followed by an ENTERY key to select DMA QDRII-B Memory Test item. The

DMA write and read test result will be report as shown in Figure 7-20.

114

Figure 7-20 Screenshot of QDRII-B Memory DAM Test Result

11. Type 6 followed by an ENTERY key to select DMA QDRII-C Memory Test item. The

DMA write and read test result will be report as shown in Figure 7-21.

115

Figure 7-21 Screenshot of QDRII-C Memory DAM Test Result

12. Type 7 followed by an ENTERY key to select DMA QDRII-D Memory Test item. The

DMA write and read test result will be report as shown in Figure 7-22.

116

Figure 7-22 Screenshot of QDRII-D Memory DAM Test Result

13. Type 8 followed by an ENTERY key to select DMA QDRII-E Memory Test item. The

DMA write and read test result will be report as shown in Figure 7-23.

117

Figure 7-23 Screenshot of QDRII-E Memory DAM Test Result

14. Type 9 followed by an ENTERY key to select DMA QDRII-A Memory Test item. The

DMA write and read test result will be report as shown in Figure 7-24.

118

Figure 7-24 Screenshot of QDRII-F Memory DAM Test Result

15. Type 99 followed by an ENTERY key to exit this test program.

 Development Tools

 Quartus II 16.0

 Visual C++ 2012

 Demonstration Source Code Location

 Quartus Project: Demonstrations\PCIE_QDR

 Visual C++ Project: Demonstrations\PCIe_SW_KIT\PCIE_QDR

 FPGA Application Design

Figure 7-25 shows the system block diagram in the FPGA system. In the Qsys, Altera

PIO controller is used to control the LED and monitor the Button Status, and the

On-Chip memory is used for performing DMA testing. The PIO controllers and the

On-Chip memory are connected to the PCI Express Hard IP controller through the

Memory-Mapped Interface.

119

Figure 7-25 Hardware block diagram of the PCIe QDRII+ reference design

 Windows Based Application Software Design

The application software project is built by Visual C++ 2012. The project includes the

following major files:

Name Description

PCIE_QDR.cpp Main program

PCIE.c Implement dynamically load for

TERAISC_PCIE_AVMM.DLL PCIE.h

TERASIC_PCIE_AVMM.h SDK library file, defines constant and data structure

The main program PCIE_QDR.cpp includes the header file “PCIE.h” and defines the

controller address according to the FPGA design.

120

The base address of BUTTON and LED controllers are 0x4000010 and 0x4000020

based on PCIE_BAR4, in respectively. The on-chip memory base address is

0x00000000 relative to the DMA controller. The above definition is the same as those

in PCIe Fundamental demo.

Before accessing the FPGA through PCI Express, the application first calls PCIE_Load

to dynamically load the TERASIC_PCIE_AVMM.DLL. Then, it call PCIE_Open to open

the PCI Express driver. The constant DEFAULT_PCIE_VID and DEFAULT_PCIE_DID

used in PCIE_Open are defined in TERASIC_PCIE_AVMM.h. If developer change the

Vender ID and Device ID and PCI Express IP, they also need to change the ID value

define in TERASIC_PCIE_AVMM.h. If the return value of PCIE_Open is zero, it means

the driver cannot be accessed successfully. In this case, please make sure:

 The FPGA is configured with the associated bit-stream file and the host is

rebooted.

 The PCI express driver is loaded successfully.

The LED control is implemented by calling PCIE_Write32 API, as shown below:

The button status query is implemented by calling the PCIE_Read32 API, as shown

below:

The memory-mapped memory read and write test is implemented by PCIE_DmaWrite

and PCIE_DmaRead API, as shown below:

The pcie link information is implemented by PCIE_ConfigRead32 API, as shown

below:

121

122

7.6 PCIe Design: PCIe_Fundamental_x2

The application reference design shows how to utilize the dual PCIe Gen3 x8 edge

connector on this board. The two PCIe Gen3 x8 Link are directly connected to two Arria

10 PCIe Hard IP individually. There two IP are call PCIe0 and PCIe1 in this design.

The Host PC can communicated with the two Hard IP independently, so the throughput

between Host PC and FPGA is double than the single PCIe Gen3 x8 link. In the design,

basic I/O is used to control the BUTTON and LED on the FPGA board. PCIe0 controls

the User LED and PCIe1 controls the Bracket LED. High-speed data transfer is

performed by DMA.

Note, this demonstration requires the Host PC to support PCIe Bifurcation.

 Demonstration Files Location

The demo file is located in the batch folder:

CDROM\demonstrations\PCIe_funcdamental_x2\demo_batch

The folder includes following files:

 FPGA Configuration File: PCIe_Fundamental.sof

 Download Batch file: test.bat

 Windows Application Software folder : windows_app, includes

 PCIE_FUNDAMENTAL.exe

 TERASIC_PCIE_AVMM.dll

 Demonstration Setup

1. Make sure your Host PC supports PCIe bifurcation and is enabled in BIOS.

2. Install the FPGA board on the bifurcation PCIe slot of your PC.

3. Configure FPGA with PCIE_Fundamental.sof by executing the test.bat.

4. Install PCIe driver if necessary. The driver is located in the folder:

CDROM\Demonstration\PCIe_SW_KIT\PCIe_Driver

5. Restart Windows

6. Make sure there are two Altera PCI API drivers are enumerated by checking the

Windows Control panel as shown in Figure 7-26.

7. Goto windows_app folder, execute PCIE_FUNDMENTAL.exe. A menu will appear

as shown in Figure 7-27.

123

Figure 7-26 Screenshot of two FPGA PCIe devices are detected

Figure 7-27 Screenshot of Program Menu

8. Type 0 followed by a ENTERY key to select PCIe0 Led Control item, then input 15

(hex 0x0f) will make all User LED lighten as shown in Figure 7-28. If input 0(hex

124

0x00), all User LED will be turn off.

Figure 7-28 Screenshot of PCIe0 LED Control

9. Type 1 followed by an ENTERY key to select PCIe0 Button Status Read item. The

button status will be report as shown in Figure 7-29 .

Figure 7-29 Screenshot of PCIe0 Button Status Report

10. Type 2 followed by an ENTERY key to select PCIe0 DMA Testing item. The DMA

test result will be report as shown in Figure 7-30.

125

Figure 7-30 Screenshot of PCIe0 DMA Memory Test Result

11. Type 3 followed by a ENTERY key to select PCIe1 Led Control item, then input 15

(hex 0x0f) will make all Bracket LED on as shown in Figure 7-31. If input 0(hex

0x00), all Bracket LED will be turn off.

Figure 7-31 Screenshot of PCIe1 LED Control

12. Type 4 followed by an ENTERY key to select PCIe1 Button Status Read item. The

button status will be report as shown in Figure 7-32.

126

Figure 7-32 Screenshot of PCIe1 Button Status Report

13. Type 2 followed by an ENTERY key to select PCIe1 DMA Testing item. The DMA

test result will be report as shown in Figure 7-33.

Figure 7-33 Screenshot of PCIe0 DMA Memory Test Result

14. Type 99 followed by an ENTERY key to exit this test program

 Development Tools

 Quartus II 16.1.2

127

 Visual C++ 2012

 Demonstration Source Code Location

 Quartus Project: Demonstrations\PCIe_Fundamental_x2

 Visual C++ Project: Demonstrations\PCIe_SW_KIT\PCIE_FUNDAMENTAL_x2

 FPGA Application Design

Figure 7-34 shows the system block diagram in the FPGA system. In the Qsys, Altera

PIO controller is used to control the LED (User LED and Bracket LED) and monitor the

Button Status, and the On-Chip memory is used for performing DMA testing. The PIO

controllers and the On-Chip memory are connected to the PCI Express Hard IP

controller through the Memory-Mapped Interface.

Figure 7-34 Hardware block diagram of the Dual PCIe reference design

 Windows Based Application Software Design

The application software project is built by Visual C++ 2012. The project includes the

following major files:

Name Description

PCIE_FUNDAMENTAL.cpp Main program

PCIE.c Implement dynamically load for

TERAISC_PCIE_AVMM.DLL PCIE.h

TERASIC_PCIE_AVMM.h SDK library file, defines constant and data structure

128

The main program PCIE_FUNDAMENTAL.cpp includes the header file “PCIE.h” and

defines the controller address according to the FPGA design.

The base address of BUTTON and LED controllers are 0x4000010 and 0x4000020

based on PCIE_BAR4, in respectively. The on-chip memory base address is

0x00000000 relative to the DMA controller.

Before accessing the FPGA through PCI Express, the application first calls PCIE_Load

to dynamically load the TERASIC_PCIE_AVMM.DLL. Then, it call PCIE_Open twice to

open two PCI Express devices:

 hPCIE_0 = PCIE_Open(DEFAULT_PCIE_VID, DEFAULT_PCIE_DID, 0);

 hPCIE_1 = PCIE_Open(DEFAULT_PCIE_VID, DEFAULT_PCIE_DID, 1);

The constant DEFAULT_PCIE_VID and DEFAULT_PCIE_DID used in PCIE_Open are

defined in TERASIC_PCIE_AVMM.h. If developers change the Vender ID and Device

ID and PCI Express IP, they also need to change the ID value define in

TERASIC_PCIE_AVMM.h. The third parameter (0 and 1 in this case) is used to specify

the PCIe device. 0 means the first device found in the PCIe bus with the given Vender

ID and Device ID. 1 means the second device found in the PCIe bus with the given

Vender ID and Device ID. If the return value of PCIE_Open is zero, it means the driver

cannot be accessed successfully. In this case, please make sure:

 The FPGA is configured with the associated bit-stream file and the host is

rebooted.

 The PCI express driver is loaded successfully.

The LED control is implemented by calling PCIE_Write32 API, as shown below:

The button status query is implemented by calling the PCIE_Read32 API, as shown

below:

129

The memory-mapped memory read and write test is implemented by PCIE_DmaWrite

and PCIE_DmaRead API, as shown below:

130

Chapter 8

Transceiver Verification

his chapter describes how to verify the FPGA transceivers for the QSFP+ by

using the test code provided in the TR10a-HL2 system CD.

8.1 Function of the Transceiver Test Code

The transceiver test code is used to verify the transceiver channels for the QSPF+

ports through an external loopback method. The transceiver channels are verified with

the data rates 10.3125 Gbps with PRBS31 test pattern.

8.2 Loopback Fixture

To enable an external loopback of transceiver channels, one of the following two

fixtures are required:

 QSFP+ Cable, as shown in Figure 8-1

 QSFP+ Loopback fixture, as shown in Figure 8-2

T

131

Figure 8-1 Optical QSFP+ Cable

Figure 8-2 QSFP+ Loopback Fixture

Figure 8-3 shows the FPGA board with two QSFP+ cable installed. Figure 8-4 shows

the FPGA board with four QSFP+ loopback fixtures installed.

Figure 8-3 Two QSFP+ Cables Installed

132

Figure 8-4 Four QSFP+ Loopback Fixtures Installed

8.3 Testing

The transceiver test code is available in the folder System CD\Tool\Transceiver_Test.

Here are the procedures to perform transceiver channel test:

1. Copy Transceiver_Test folder to your local disk.

2. Ensure that the FPGA board is NOT powered on.

3. Plug-in the QSPF+ loopback fixtures.

4. Connect your FPGA board to your PC with a mini USB cable.

5. Power on the FPGA board

6. Execute ‘test.bat” in the Transceiver_Test folder under your local disk.

7. The batch file will download .sof and .elf files, and start the test immediately.

The test result is shown in the Nios-Terminal, as shown in Figure 8-5.

8. To terminate the test, press one of the BUTTON0~3 buttons on the FPGA

board. The loopback test will terminate as shown in Figure 8-6.

133

Figure 8-5 QSFP+ Transceiver Loopback Test in Progress

Figure 8-6 QSFP Transceiver Loopback Done

