Loop powered, integral cable sensors

PCC423 series

Table 1: PCC423xx-yy-C model selection guide

xx (4-20 mA output type)	yy (4-20 mA full scale)	C (cable type)	
AR = acceleration, RMS AP = acceleration, peak	05 = 5 g (49 m/sec ²) 10 = 10 g (98 m/sec ²) 20 = 20 g (196 m/sec ²)	J9T2A = shielded, twisted pair cable, high temp	
VR = velocity, RMS VP = velocity, peak	05 = 0.5 ips (12.8 mm/sec) 10 = 1.0 ips (25.4 mm/sec) 20 = 2.0 ips (50.8 mm/sec) 50 = 5.0 ips (127 mm/sec)	J10 = shielded, twisted pair cable, general purpose	

PCC423xx-yy-C wiring

Certifications

Key features

- Choice of true RMS or calculated peak output (in acceleration or velocity units)
- Other connector options available (PCC421 models)
- Enables continuous trending of machine vibration
- Manufactured in an approved ISO 9001 facility

Note: Due to continuous process improvement, specifications are subject to change without notice. This document is cleared for public release.

Loop powered, integral cable sensors

PCC423 series

SPECIFICATIONS

Output, 4-20 mA	see Table 1 on page 1
Full scale, 4-20 mA, ±5%	selectable (see Table 1)
Frequency response, 4-20 mA	see Table 2, below
Repeatability	±2%
Transverse sensitivity, max	5%
Power requirements (2-wire loop power): Voltage at sensor terminals	12 - 30 VDC
Loop resistance ¹ at 24 VDC, max	700 Ω
Turn on time, 4-20 mA loop	<30 seconds
Grounding	case isolated, internally shielded
Temperature range	–40° to +105°C
Vibration limit	250 g peak
Shock limit	2,500 g peak
Sealing	hermetic
Sensing element design	PZT ceramic / shear
Weight	145 grams (excluding cable)
Case material	stainless steel
Mounting ⁴	1/4-28 captive screw
Cabling	J9T2A or J10 (see Table 1)

Accessories supplied: Mounting screw; calibration data (level 2)

Connections	
Function	Cable color
loop positive (+)	white
loop negative (–)	black
ground	shield

Notes: 1 Maximum loop resistance (R_L) can be calculated by:

$$R_{L} = \frac{V_{DC power} - 10 \text{ V}}{20 \text{ mA}}$$

DC supply voltage	R _L (max resistance) ²	R _L (minimum wattage capability)³
12 VDC	100 Ω	1/8 watt
20 VDC	500 Ω	1/4 watt
24 VDC	700 Ω	1/2 watt
26 VDC	800 Ω	1/2 watt
30 VDC	1,000 Ω	1/2 watt

 $^{^{\}rm 2}$ Lower resistance is allowed, greater than 10 Ω recommended.

Table 2: PCC423 frequency response			
Acceleration	±10%	10 Hz - 1 kHz	
	±3 dB	1 Hz - 2 kHz	
Velocity	±10%	10 Hz - 1 kHz	
	±3 dB	3.5 Hz - 2 kHz	

Note: Due to continuous process improvement, specifications are subject to change without notice. This document is cleared for public release.

 $^{^3}$ Minimum R $_{\!_L}$ wattage determined by: (0.0004 x R $_{\!_L}$).

⁴ M6 mounting screw available by request.