### **Powercast<sup>®</sup> High-Function RFID Sensor Datalogger**



### **DESCRIPTION**

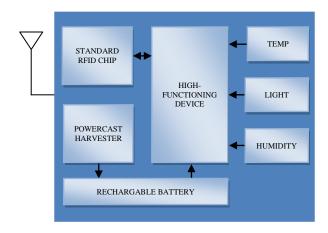
The PCT200 RFID Sensor Tag is a highfunctioning, datalogging RFID tag capable of measuring temperature, humidity, and light level with high accuracy. It contains a wirelessly rechargeable battery to enable long lasting data logging capabilities while outside of the RFID reader's field. Its customizable data reading capabilities can be easily set through a user friendly interface. The tag harnesses the capability of the Powercast Powerharvester® Chipset to recharge the on-board battery while the data is being downloaded. The sensor measurements can be read back out of the tag's memory using any standard UHF RFID reader. Powercast's technology enables a completely maintenance-free sensing and tracking solution for UHF RFID applications.

### **FEATURES**

- EPC Class 1 Gen 2 compliant
- ISO/IEC 18000-6C compliant
- 10 meter read range
- High sensor accuracy
- "Find Tag" feature locate one specific tag by illuminating an on-board LED
- Wide RF range: -17dBm to +20dBm
- Frequency range: 860MHz to 960MHz
- Compact hard case packaging
- RoHS compliant
- High RF to DC conversion efficiency up to 75%
- -20 to +60C operational temperature range
- Up to 1 month of battery life
- Onboard button to start/stop logging

- Battery is recharged using the RFID reader's field (No wires to plug in, no batteries to change)
- Customizable data read times from 1 minute to 1 hour
- Stores maximum, minimum, and average values in user memory
- Read times and dates are available along with sensor data




### **APPLICATIONS**

- Medical Asset Tracking and Monitoring
- Smart Grid
- Building Automation
- Logistics
- Asset Monitoring
- Supply Chain Management
- Materials Management
- Industrial Monitoring

Powercast products and technology are covered by one or more patents with other patents pending. All patent and trademark information can be found at <a href="http://www.powercastco.com/IP/">http://www.powercastco.com/IP/</a>.



### **Functional Block Diagram**



### **ABSOLUTE MAXIMUM RATINGS**

 $T_A = 25$ °C, unless otherwise noted.

| Parameter                          | Value     | Unit |
|------------------------------------|-----------|------|
| RF Input Power                     | +23       | dBm  |
| Operating Temperature Range        | -20 to 60 | °C   |
| Battery Charging Temperature Range | 0 to 60   | °C   |
| Storage Temperature Range          | -20 to 60 | °C   |

Exceeding the absolute maximum ratings may cause permanent damage to the device.

### **SPECIFICATIONS**

 $T_A = 25$ °C,  $RF_{IN} = 915$ MHz unless otherwise noted.

| Parameter                       | Min  | Тур  | Max    | Unit  |
|---------------------------------|------|------|--------|-------|
| RF Characteristics <sup>1</sup> |      |      |        |       |
| Input Power                     | -17  |      | +20    | dBm   |
| Frequency                       | 860  | 915  | 960    | MHz   |
| Read Distance                   | 0    | 5    | 10     | m     |
| Sensor Read Time                | 15.3 | 3600 | 86,400 | S     |
| Temperature                     |      |      |        |       |
| Range                           | -20  | -    | 60     | °C    |
| Accuracy                        | -    | ±2%  | -      |       |
| Light                           |      |      |        |       |
| Range                           | 0    | -    | 1000   | Lux   |
| Accuracy                        | -    | ±10% | -      |       |
| Humidity                        |      |      |        |       |
| Range > -20°C                   | 0    | -    | 100    |       |
| Accuracy                        | -    |      | -      | %RH   |
| 11% to 89%                      |      | ±4%  |        |       |
| 0 to 10% or 90% to 100%         |      | ±8%  |        |       |
| Battery Life*                   | 5    | 14   | 28     | Days  |
| Recharge Time (at 1m)           | 10   | 16   | 24     | Hours |

<sup>\*</sup>Device runtime will decrease as temperature decreases

### **Powercast<sup>®</sup> High-Function RFID Sensor Datalogger**



### **FUNCTIONAL DESCRIPTION**

### **OVERVIEW**

The tag operates by waking up approximately every 15s and checking user programmable flags in memory. These flags determine the tags' behavior. Depending on how the flags are configured, the tag will do one or more of the following:

- 1. Go back to sleep
- 2. Erase the memory
- 3. Perform the locate operation
- 4. Update maximum and minimum sensor reads
- 5. Update the logged averages and current sensor reads.

Sensor reads are taken at user defined intervals from 15s to one day (24 hours) and are settable via the **wakeUpDuration** word. The sensor values are stored in the RFID chip's memory so that the values can be read out even if the tag loses power. The tag is equipped with a button and a switch that start/stop logging and disconnect the battery respectively.

#### **INITIAL POWER ON PROCEDURE**

The following steps should be carried out anytime the switch on the PCT200 is turned on. After turning the switch to the on position the tag **MUST** be placed in an RF field. This will put the PCT200 into normal operation. By default, the tag will come up with all the flag bits set to 0. This is to prevent the data on the tag from being erased.

NOTE: if the tag is now set to run mode either by the reader or pressing the button, the logging data will be overwritten.

#### **POWER**

The PCT200 tag is powered from an onboard rechargeable battery. The battery life ranges from 5 days to 28 days depending upon how often the tag is set to check in, which is adjustable by the user. The tag utilizes Powercast's harvesting technology to harvest the RF energy produced by an RFID reader and efficiently convert it into usable DC Power to recharge the battery. Therefore, anytime that the tag is in the RF field, the battery is being recharged. Recharge time typically take between 8 and 12 hours depending the current state of the battery and how close to the reader that tag is. The LED will blink quickly two times when the battery is full. To prevent permanent battery damage it is recommended to recharge the battery every 2 months when not in use.

NOTE: If the tag will not be used for an extended period of time, the onboard switch must be turned off to prevent damage to the battery.

### **SENSOR READS**

The PCT200 has the option to sense temperature, light, and humidity or any combination of the three. There is also a find tag only version. The rate at which sensor reads are taken is adjustable by the user and can range from 15s to one day (24 hours) in 15s increments. See **WAKEUP DURATION** for instructions on how to set the check in time.

### **Powercast<sup>®</sup> High-Function RFID Sensor Datalogger**



### **SENSOR TIMES**

The tag stores an approximate corresponding time associated with each maximum and minimum sensor read. To get the sensor times, add one to the value read from the tag and multiply it by 15.3 s and add it to the start time.

### **SENSOR DATA**

The PCT200 will store:

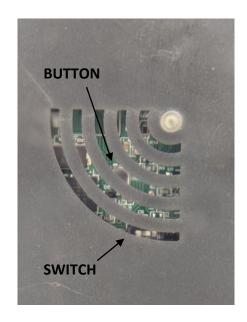
- The 5 maximum and 5 minimum values and their respective read times for each sensor
- The current sensor read values
- The averages of all the sensor read values

The averages and current values are updated twice per day or on demand by setting the correct flag. The memory location for each sensor read is listed in *Table 1*. The data is stored as a hexadecimal value between 0 and 1023. See section entitled *Conversion Formulas* for information on how to convert these values to their corresponding sensor values.

#### **MEMORY CLEAR**

The sensor data can be reset using the flags on the tag. This enables the tag to be used multiple times for different applications. This will cause all of the logged sensor data to be permanently deleted. The start time must always be written to the tag after every memory clear. See section entitled "FLAGS" for more information.

### **BUTTON**


The PCT200 is equipped with a button to start and stop logging data. Pressing the button performs the same function as toggling the Start/Stop bit of the Flags in user memory location 04h.

#### **SWITCH**

The PCT200 is also equipped with a switch. The switch is used to completely disconnect the onboard battery. During shipping and storage, the switch should be turned to the off position to prevent the battery from draining. The switch must be turned on and the device must be placed in the RF field before the tag will operate.

#### **LOCATE TAG**

The PCT200 is equipped with a locate tag feature. This helps to find a tag in the field when there are multiple tags. It causes the LED on the tag to blink so that the user can find it.



# Powercast<sup>®</sup> High-Function RFID Sensor Datalogger



### **DATA RETRIEVAL**

The tags are compatible with EPC Gen2 commands. Data should be read in 16 bit words. The user data is stored in the user memory locations (memory bank 3) starting at byte 00h. The data values will range from 0 to 1023.

**Table 1: Sensor Memory Locations** 

| WORD | MEMORY  | CONTENT                | DATA   | DATA   | ERASED   | CRC |
|------|---------|------------------------|--------|--------|----------|-----|
|      | ADDRESS |                        | SOURCE | SINK   | ON CLEAR |     |
| 0    | 00h     | Product ID             | PCT200 | User   | No       | No  |
| 1    | 02h     | Product                | PCT200 | User   | No       | No  |
|      |         | Configuration          |        |        |          |     |
| 2    | 04h     | Flags                  | User   | PCT200 | No       | No  |
| 3    | 06h     | Wake Up Duration       | User   | PCT200 | No       | No  |
| 4    | 08h     | RESERVED               | -      | -      | -        | -   |
| 5    | 0Ah     | Start Time             | User   | User   | No*      | No  |
| 6    | 0Ch     | Start Time             | User   | User   | No*      | No  |
| 7    | 0Eh     | Battery Voltage        | PCT200 | User   | Yes      | No  |
| 8    | 10h     | Maximum ADC Read       | PCT200 | User   | Yes      | Yes |
|      |         | of Temperature 1       |        |        |          |     |
| 9    | 12h     | # of wakes since start | PCT200 | User   | Yes      | Yes |
| 10   | 14h     | Maximum ADC Read       | PCT200 | User   | Yes      | Yes |
|      |         | of Temperature 2       |        |        |          |     |
| 11   | 16h     | # of wakes since start | PCT200 | User   | Yes      | Yes |
| 12   | 18h     | Maximum ADC Read       | PCT200 | User   | Yes      | Yes |
|      |         | of Temperature 3       |        |        |          |     |
| 13   | 1Ah     | # of wakes since start | PCT200 | User   | Yes      | Yes |
| 14   | 1Ch     | Maximum ADC Read       | PCT200 | User   | Yes      | Yes |
|      |         | of Temperature 4       |        |        |          |     |
| 15   | 1Eh     | # of wakes since start | PCT200 | User   | Yes      | Yes |
| 16   | 20h     | Maximum ADC Read       | PCT200 | User   | Yes      | Yes |
|      |         | of Temperature 5       |        |        |          |     |
| 17   | 22h     | # of wakes since start | PCT200 | User   | Yes      | Yes |
| 18   | 24h     | Minimum ADC Read       | PCT200 | User   | Yes      | Yes |
|      |         | of Temperature 1       |        |        |          |     |
| 19   | 26h     | # of wakes since start | PCT200 | User   | Yes      | Yes |
| 20   | 28h     | Minimum ADC Read       | PCT200 | User   | Yes      | Yes |
|      |         | of Temperature 2       |        |        |          |     |
| 21   | 2Ah     | # of wakes since start | PCT200 | User   | Yes      | Yes |
| 22   | 2Ch     | Minimum ADC Read       | PCT200 | User   | Yes      | Yes |
|      |         | of Temperature 3       |        |        |          |     |

# Powercast<sup>®</sup> High-Function RFID Sensor Datalogger



| 23 | 2Eh | # of wakes since start            | PCT200 | User | Yes | Yes |
|----|-----|-----------------------------------|--------|------|-----|-----|
| 24 | 30h | Minimum ADC Read of Temperature 4 | PCT200 | User | Yes | Yes |
| 25 | 32h | # of wakes since start            | PCT200 | User | Yes | Yes |
| 26 | 34h | Minimum ADC Read of Temperature 5 | PCT200 | User | Yes | Yes |
| 27 | 36h | # of wakes since start            | PCT200 | User | Yes | Yes |
| 28 | 38h | Maximum ADC Read<br>of Humidity 1 | PCT200 | User | Yes | Yes |
| 29 | 3Ah | # of wakes since start            | PCT200 | User | Yes | Yes |
| 30 | 3Ch | Maximum ADC Read of Humidity 2    | PCT200 | User | Yes | Yes |
| 31 | 3Eh | # of wakes since start            | PCT200 | User | Yes | Yes |
| 32 | 40h | Maximum ADC Read of Humidity 3    | PCT200 | User | Yes | Yes |
| 33 | 42h | # of wakes since start            | PCT200 | User | Yes | Yes |
| 34 | 44h | Maximum ADC Read<br>of Humidity 4 | PCT200 | User | Yes | Yes |
| 35 | 46h | # of wakes since start            | PCT200 | User | Yes | Yes |
| 36 | 48h | Maximum ADC Read<br>of Humidity 5 | PCT200 | User | Yes | Yes |
| 37 | 4Ah | # of wakes since start            | PCT200 | User | Yes | Yes |
| 38 | 4Ch | Minimum ADC Read<br>of Humidity 1 | PCT200 | User | Yes | Yes |
| 39 | 4Eh | # of wakes since start            | PCT200 | User | Yes | Yes |
| 40 | 50h | Minimum ADC Read<br>of Humidity 2 | PCT200 | User | Yes | Yes |
| 41 | 52h | # of wakes since start            | PCT200 | User | Yes | Yes |
| 42 | 54h | Minimum ADC Read of Humidity 3    | PCT200 | User | Yes | Yes |
| 43 | 56h | # of wakes since start            | PCT200 | User | Yes | Yes |
| 44 | 58h | Minimum ADC Read<br>of Humidity 4 | PCT200 | User | Yes | Yes |
| 45 | 5Ah | # of wakes since start            | PCT200 | User | Yes | Yes |
| 46 | 5Ch | Minimum ADC Read<br>of Humidity 5 | PCT200 | User | Yes | Yes |
| 47 | 5Eh | # of wakes since start            | PCT200 | User | Yes | Yes |
| 48 | 60h | Maximum ADC Read<br>of Light 1    | PCT200 | User | Yes | Yes |
| 49 | 62h | # of wakes since start            | PCT200 | User | Yes | Yes |

# Powercast<sup>®</sup> High-Function RFID Sensor Datalogger



| 50    | 64h | Maximum ADC Read<br>of Light 2 | PCT200 | User | Yes | Yes            |
|-------|-----|--------------------------------|--------|------|-----|----------------|
| 51    | 66h | # of wakes since start         | PCT200 | User | Yes | Yes            |
| 52    | 68h | Maximum ADC Read<br>of Light 3 | PCT200 | User | Yes | Yes            |
| 53    | 6Ah | # of wakes since start         | PCT200 | User | Yes | Yes            |
| 54    | 6Ch | Maximum ADC Read<br>of Light 4 | PCT200 | User | Yes | Yes            |
| 55    | 6Eh | # of wakes since start         | PCT200 | User | Yes | Yes            |
| 56    | 70h | Maximum ADC Read<br>of Light 5 | PCT200 | User | Yes | Yes            |
| 57    | 72h | # of wakes since start         | PCT200 | User | Yes | Yes            |
| 58    | 74h | Minimum ADC Read<br>of Light 1 | PCT200 | User | Yes | Yes            |
| 59    | 76h | # of wakes since start         | PCT200 | User | Yes | Yes            |
| 60    | 78h | Minimum ADC Read<br>of Light 2 | PCT200 | User | Yes | Yes            |
| 61    | 7Ah | # of wakes since start         | PCT200 | User | Yes | Yes            |
| 62    | 7Ch | Minimum ADC Read<br>of Light 3 | PCT200 | User | Yes | Yes            |
| 63    | 7Eh | # of wakes since start         | PCT200 | User | Yes | Yes            |
| 64    | 80h | Minimum ADC Read<br>of Light 4 | PCT200 | User | Yes | Yes            |
| 65    | 82h | # of wakes since start         | PCT200 | User | Yes | Yes            |
| 66    | 84h | Minimum ADC Read<br>of Light 5 | PCT200 | User | Yes | Yes            |
| 67    | 86h | # of wakes since start         | PCT200 | User | Yes | Yes            |
| 68    | 88h | Current Temperature            | PCT200 | User | Yes | Yes            |
| 69    | 8Ah | Current Humidity               | PCT200 | User | Yes | Yes            |
| 70    | 8Ch | Current Light                  | PCT200 | User | Yes | Yes            |
| 71    | 8Eh | RESERVED                       | -      | -    | Yes | Yes<br>(0000h) |
| 72-73 | 90h | Average<br>Temperature         | PCT200 | User | Yes | Yes            |
| 74-75 | 94h | Average Humidity               | PCT200 | User | Yes | Yes            |
| 76-77 | 98h | Average Light                  | PCT200 | User | Yes | Yes            |
| 78    | 9Ch | # of wake ups                  | PCT200 | User | Yes | Yes            |
| 79    | 9Eh | CRC                            | PCT200 | User | Yes | -              |



### PRODUCT ID AND CONFIGURATION

The product ID code for the PCT200 is 200 (C8h). For the PCT100 tag, it will be 100 (64h). The product configuration is dependent upon which sensors are populated. It is a binary code where 1 represents the sensor being populated and 0 represents the sensor being absent.

**Table 2: Product Configuration** 

| Bit 2       | Bit 1 | Bit 0    |
|-------------|-------|----------|
| Temperature | Light | Humidity |

For Example, if temperature and humidity are populated and light is not, the product ID would be 101b or 5h.

### **FLAGS**

The flags are used to control operation of the tag.

| Bit | Description     | Values            |
|-----|-----------------|-------------------|
| 0   | Start/Stop      | 0-Stop 1-Start    |
| 1   | Erase Memory    | 1-Clear           |
| 2   | Locate          | 1-Locate          |
| 3   | Update Averages | 1-Update Averages |
| 4   | RESERVED        |                   |
| 5   | RESERVED        |                   |
| 6   | RESERVED        |                   |
| 7   | RESERVED        |                   |

### START/STOP

The tag will remain in sleep mode until the run bit is set to 1 either using an RFID reader or pressing the onboard button. Once it is running, it will take all of the sensor readings, update the RFID chip, and go to sleep for the **wakeUpDuration**. It will wake up every 15s to check the flags. It will stay in this loop until the run bit is set to 0. When the run bit is set to 0, all the ADC

reads can still be read out from the tag, but no new values will be populated.

### **ERASE MEMORY**

When set to 1, the tag will erase all values from word 7 onward, including the **count** that relates the sensor reads to the start time. Because of this, the start time must be written to the tag every time the memory is cleared. After the memory is cleared the Erase Memory flag will automatically be set back to 0 and the LED will blink twice. The tag will then continue checking the rest of the flag bits and will resume whatever mode it was in prior to locate.

#### LOCATE

The locate feature is activated by setting the locate bit high. The LED will blink for 10s. Afterward, the locate bit is automatically set back to 0. The tag will then continue checking the rest of the flag bits and will resume whatever mode it was in prior to locate.

### **UPDATE AVERAGES**

The averages are automatically sent to the RFID chip for reading twice per day, regardless of what the Update Averages flag is set to. The user can also request that the averages be updated on demand by setting the Update Averages flag to high. This is done to preserve battery life and limit the number of writes to the RFID chip memory. Afterward, the Update Averages flag is automatically cleared. The tag will then continue checking the rest of the flag bits and will resume whatever mode it was in prior to locate.

### **Powercast<sup>®</sup> High-Function RFID Sensor Datalogger**



### WAKEUP DURATION

The wake up duration is user settable. It tells the tag how often to take the sensor reads. It will be 15.3s multiplied by the user set value. For example, if the wakeUpDuration field is set to 10, the tag will take sensor readings every 150.3s. The wakeUpDuration is checked every 15.3s by the tag.

#### START TIME

The start time is stored in words 5-6 on the tag. It uses 32-bit POSIX time, which is the number of seconds from EPOC. The timezone is UTC+0. The count associated with each sensor read is multiplied by 15.3s and added to this start time to get a rough idea of when each sensor read was taken.

#### SENSOR ADC READS

The sensor read results are integers between 0 and 1023 and can be converted using the equations in the CONVERSION FORMULAS section below. If a sensor is not populated, the ADC value will be read as 1111 11XX XXXX XXXX in binary.

The word directly following a sensor ADC read is the count corresponding to that read. To determine when a sensor read was taken, add one to the count and multiply it by 15.3s. Then, add this value to the start time. If a sensor is not populated, the value will be read as 0000h.

### **CURRENT SENSOR VALUES**

The current sensor values, like the averages, are written to the RFID chip twice per day. You can get the current values on demand by setting the corresponding flag bit high. The current ADC reads are

converted using the same formulas as the normal sensor reads.

### **AVERAGE VALUES**

The average values are stored on the RFID tag using an unsigned Q 10.22 format. The average values must be bitwise shifted to the right by 22 bits. The remaining value can be converted using the same formulas below.

### CYCLIC REDUNDANCY CHECK

The averages, current values, and wake count (word addresses 88h to 9Dh inclusive) can be verified using the cyclic redundancy check *ITU X.25 FCS*. This checksum value is available in memory bank 3 (user memory) at word address 9Eh. It is represented in big-endian order with the most significant bit first.

For more information, see Section 2.2.7.4 in ITU-T Rec. X.25 (10/96) Interface between Data Terminal Equipment (DTE) and Data Circuit-terminating Equipment (DCE) for terminals operating in the packet mode and connected to public data networks by a dedicated circuit.



### **CONVERSION FORMULAS**

The values for each sensor read will be integers between 0 and 1023 in decimal and stored on the RFID chip as hexadecimal values. The following are the formulas to convert these values into their respective sensor values.

### TEMPERATURE

For temperature, the formula will convert the values read into a resistance.

$$R(k\Omega) = \frac{10 * X}{1024 - X}$$

Where X is the decimal value read from the tag. The resistance value must then converted into temperature using the look up table in **Table 1**. If the resistance falls between two values, a linear approximation between the two closest values should be made.

**Table 1: Resistance to Temperature** 

| Resistance<br>(kΩ) | Temperature<br>(°C) | Resistance<br>(kΩ) | Temperature<br>(°C) |
|--------------------|---------------------|--------------------|---------------------|
| 195.652            | -40                 | 4.917              | 45                  |
| 148.171            | -35                 | 4.161              | 50                  |
| 113.347            | -30                 | 5.535              | 55                  |
| 87.559             | -25                 | 3.014              | 60                  |
| 68.237             | -20                 | 2.586              | 65                  |
| 53.65              | -15                 | 2.228              | 70                  |
| 42.506             | -10                 | 1.925              | 75                  |
| 33.892             | -5                  | 1.669              | 80                  |
| 27.219             | 0                   | 1.452              | 85                  |
| 22.021             | 5                   | 1.268              | 90                  |
| 17.926             | 10                  | 1.11               | 95                  |
| 14.674             | 15                  | 0.974              | 100                 |
| 12.081             | 20                  | 0.858              | 105                 |
| 10                 | 25                  | 0.758              | 110                 |
| 8.315              | 30                  | 0.672              | 115                 |
| 6.948              | 35                  | 0.596              | 120                 |
| 5.834              | 40                  | 0.531              | 125                 |

LIGHT

$$Ill.(Lux) = -1.2648 * X + 1216$$

Where X is the decimal value read from the Tag.

Note: The Light equations for the PCT100 and PCT200 are different.

HUMIDITY

$$\%RH = \frac{1}{0.00636} \left( \frac{X}{1024} - 0.1515 \right)$$

Where X is the decimal value read from the tag.

Please see the PCT Conversions document.

SENSOR TIME

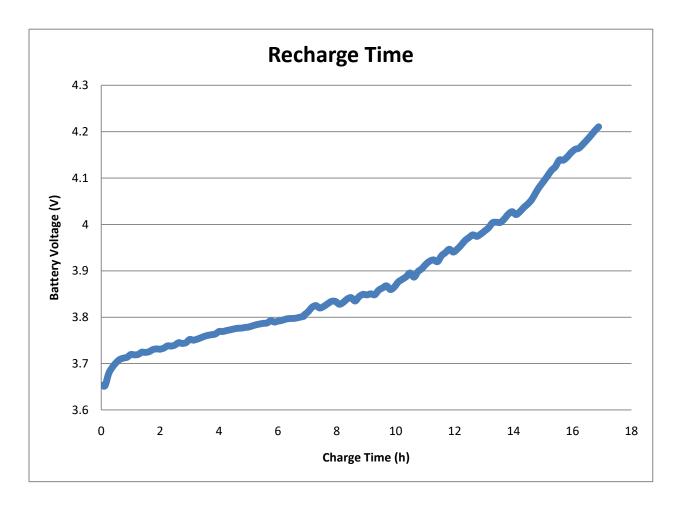
$$Read\ Time = (X + 1) * 15.3s + Start$$

Where X is the value read from the tag in decimal and start is the start time stored in words 5 and 6.

Note: All times are approximate.

### BATTERY VOLTAGE

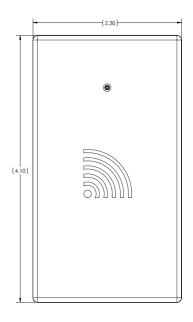
The battery voltage will range from 3.6V to 4.2V. The formula to calculate is

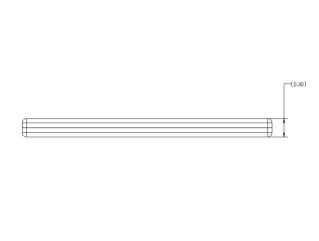

$$Battery Voltage = \frac{ADC * 6}{1024}$$

## **Powercast<sup>®</sup> High-Function RFID Sensor Datalogger**



### **BATTERY RECHARGING INFORMATION**


The data below illustrates the battery being recharged using a standard UHF RFID reader at a distance of 1m at room temperature. Factors that affect the recharge time are tag orientation, reader output power and the distance between the PCT200 and the reader's antenna. For optimal charge time, the tag should be oriented parallel to the RFID antenna. If the onboard switch is not in the on position, the battery will not charge.




Note: Battery recharge time is effected by temperature and the battery should not be recharged at temperature of less than 0°C.



### **Mechanical Specifications**





All Dimensions in inches

### **P2110 MODULE SERIES**

### PCT 2 00 - XYZ

| PCT        | Version                  | XYZ (Sensors Desired)               |
|------------|--------------------------|-------------------------------------|
| Tag series | 100 = Battery Free       | T= Temperature                      |
|            | <b>200</b> = Datalogging | <b>H</b> =Humidity                  |
|            |                          | $\mathbf{L} = \mathbf{Light}$       |
|            |                          | $\mathbf{F} = \text{Find Tag Only}$ |

| PCT100-T   | Temperature                     |
|------------|---------------------------------|
| PCT100-L   | Light                           |
| PCT100-H   | Humidity                        |
| PCT100-TL  | Temperature and Light           |
| PCT100-TH  | Temperature and Humidity        |
| PCT100-LH  | Light and Humidity              |
| PCT100-TLH | Temperature, Light and Humidity |
| PCT200-T   | Temperature                     |
| PCT200-L   | Light                           |
| РСТ200-Н   | Humidity                        |
| PCT200-TL  | Temperature and Light           |
| PCT200-TH  | Temperature and Humidity        |
| PCT200-LH  | Light and Humidity              |
| PCT200-TLH | Temperature, Light and Humidity |