

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com/, http://www.nexperia.com/, use http://www.nexperia.com/

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

PDTA113E series

PNP resistor-equipped transistors; R1 = 1 k Ω , R2 = 1 k Ω

Rev. 05 — 2 September 2009

Product data sheet

1. Product profile

1.1 General description

PNP Resistor-Equipped Transistors (RET).

Table 1. Product overview

Type number	Package	NPN		
	NXP	JEITA	JEDEC	complement
PDTA113EE	SOT416	SC-75	-	PDTC113EE
PDTA113EK	SOT346	SC-59A	TO-236	PDTC113EK
PDTA113EM	SOT883	SC-101	-	PDTC113EM
PDTA113ES[1]	SOT54 (TO-92)	SC-43A	TO-92	PDTC113ES
PDTA113ET	SOT23	-	TO-236AB	PDTC113ET
PDTA113EU	SOT323	SC-70	-	PDTC113EU

^[1] Also available in SOT54A and SOT54 variant packages (see Section 2)

1.2 Features

- Built-in bias resistors
- Simplifies circuit design
- Reduces component count
- Reduces pick and place costs

1.3 Applications

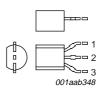
- General purpose switching and amplification
- Inverter and interface circuits

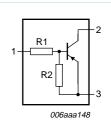
Circuit drivers

1.4 Quick reference data

Table 2. Quick reference data

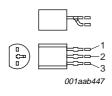
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CEO}	collector-emitter voltage	open base	-	-	-50	V
I _O	output current (DC)		-	-	-100	mA
R1	bias resistor 1 (input)		0.7	1	1.3	kΩ
R2/R1	bias resistor ratio		0.8	1	1.2	

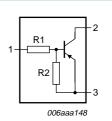

2. Pinning information


Table 3. Pinning

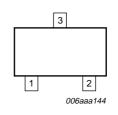
Pin	Description	Simplified outline Symbol
SOT54		
1	input (base)	
2	output (collector)	R1 2
3	GND (emitter)	001aab347 R2 R2 006aaa148

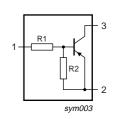
20	ТБ	<i>Λ</i> Λ
30	IJ	47


1	input (base)
2	output (collector)
3	GND (emitter)



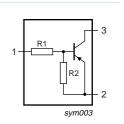
SOT54 variant


1	input (base)
2	output (collector)
3	GND (emitter)



SOT23, SOT323, SOT346, SOT416

1	input (base)
2	GND (emitter)
3	output (collector)



SOT883

1	input (base)
2	GND (emitter)
3	output (collector)

PDTA113E_SER_5

© NXP B.V. 2009. All rights reserved.

3. Ordering information

Table 4. Ordering information

Package				
Name	Description	Version		
SC-75	plastic surface mounted package; 3 leads	SOT416		
SC-59A	plastic surface mounted package; 3 leads	SOT346		
SC-101	leadless ultra small plastic package; 3 solder lands; body 1.0 \times 0.6 \times 0.5 mm	SOT883		
SC-43A	plastic single-ended leaded (through hole) package; 3 leads	SOT54		
-	plastic surface mounted package; 3 leads	SOT23		
SC-70	plastic surface mounted package; 3 leads	SOT323		
	Name SC-75 SC-59A SC-101 SC-43A	Name Description SC-75 plastic surface mounted package; 3 leads SC-59A plastic surface mounted package; 3 leads SC-101 leadless ultra small plastic package; 3 solder lands; body 1.0 × 0.6 × 0.5 mm SC-43A plastic single-ended leaded (through hole) package; 3 leads - plastic surface mounted package; 3 leads		

^[1] Also available in SOT54A and SOT54 variant packages (see Section 2 and Section 9).

4. Marking

Table 5. Marking codes

indicate in the second	
Type number	Marking code ^[1]
PDTA113EE	16
PDTA113EK	17
PDTA113EM	G4
PDTA113ES	TA113E
PDTA113ET	*15
PDTA113EU	*14

^{[1] * = -:} made in Hong Kong

^{* =} p: made in Hong Kong

^{* =} t: made in Malaysia

^{* =} W: made in China

5. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CBO}	collector-base voltage	open emitter	-	-50	V
V_{CEO}	collector-emitter voltage	open base	-	-50	V
V_{EBO}	emitter-base voltage	open collector	-	-10	V
VI	input voltage				
	positive		-	+10	V
	negative		-	-10	V
Io	output current (DC)		-	-100	mA
I _{CM}	peak collector current		-	-100	mA
P _{tot}	total power dissipation	$T_{amb} \le 25 ^{\circ}C$			
	SOT416		<u>[1]</u> -	150	mW
	SOT346		<u>[1]</u> -	250	mW
	SOT883		[2][3]	250	mW
	SOT54		<u>[1]</u> -	500	mW
	SOT23		<u>[1]</u> -	250	mW
	SOT323		[1] -	200	mW
T _{stg}	storage temperature		-65	+150	°C
T _j	junction temperature		-	150	°C
T _{amb}	ambient temperature		-65	+150	°C

^[1] Refer to standard mounting conditions

6. Thermal characteristics

Table 7. Thermal characteristics

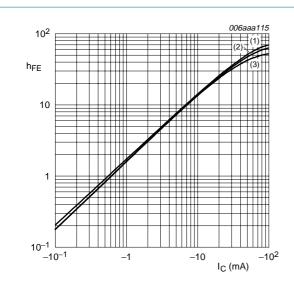
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air				
	SOT416		<u>[1]</u> _	-	833	K/W
	SOT346		<u>[1]</u> _	-	500	K/W
	SOT883		[2][3]	-	500	K/W
	SOT54		<u>[1]</u> _	-	250	K/W
	SOT23		<u>[1]</u> _	-	500	K/W
	SOT323		<u>[1]</u> _	-	625	K/W

^[1] Refer to standard mounting conditions.

^[2] Reflow soldering is the only recommended soldering method.

^[3] Refer to SOT883 standard mounting conditions; FR4 printed-circuit board with 60 µm copper strip line.

^[2] Reflow soldering is the only recommended soldering method.


^[3] Refer to SOT883 standard mounting conditions; FR4 printed-circuit board with 60 µm copper strip line.

7. Characteristics

Table 8. Characteristics

T_{amb} = 25 °C unless otherwise specified

Parameter	Conditions	Min	Typ	May	Unit
		IVIIII	тур		Offic
collector-base cut-off current	$V_{CB} = -50 \text{ V}; I_E = 0 \text{ A}$	-	-	-100	nA
collector-emitter	$V_{CE} = -30 \text{ V}; I_B = 0 \text{ A}$	-	-	–1	μΑ
cut-off current	$V_{CE} = -30 \text{ V}; I_{B} = 0 \text{ A};$ $T_{j} = 150 ^{\circ}\text{C}$	-	-	-50	μΑ
emitter-base cut-off current	$V_{EB} = -5 \text{ V}; I_C = 0 \text{ A}$	-	-	-4	mA
DC current gain	$V_{CE} = -5 \text{ V}; I_{C} = -40 \text{ mA}$	30	-	-	
collector-emitter saturation voltage	$I_C = -30 \text{ mA}; I_B = -1.5 \text{ mA}$	-	-	-150	mV
off-state input voltage	$V_{CE} = -5 \text{ V}; I_{C} = -100 \mu\text{A}$	-	-1.3	-0.5	V
on-state input voltage	$V_{CE} = -300 \text{ mV}; I_{C} = -20 \text{ mA}$	-2	-1.7	-	V
bias resistor 1 (input)		0.7	1	1.3	kΩ
bias resistor ratio		0.8	1	1.2	
collector capacitance	$V_{CB} = -10 \text{ V}; I_E = i_e = 0 \text{ A};$ f = 1 MHz	-	-	2	pF
	current collector-emitter cut-off current emitter-base cut-off current DC current gain collector-emitter saturation voltage off-state input voltage on-state input voltage bias resistor 1 (input) bias resistor ratio	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} \text{collector-base cut-off} \\ \text{current} \end{array} \hspace{0.5cm} V_{CB} = -50 \text{ V; } I_E = 0 \text{ A} \\ \text{collector-emitter} \\ \text{cut-off current} \end{array} \hspace{0.5cm} V_{CE} = -30 \text{ V; } I_B = 0 \text{ A} \\ \text{V}_{CE} = -30 \text{ V; } I_B = 0 \text{ A;} \\ \text{T}_j = 150 ^{\circ}\text{C} \end{array} \hspace{0.5cm} - \\ \text{emitter-base cut-off} \\ \text{current} \end{array} \hspace{0.5cm} V_{EB} = -5 \text{ V; } I_C = 0 \text{ A} \\ \text{current} \end{array} \hspace{0.5cm} - \\ \text{DC current gain} \hspace{0.5cm} V_{CE} = -5 \text{ V; } I_C = -40 \text{ mA} \\ \text{collector-emitter} \\ \text{saturation voltage} \end{array} \hspace{0.5cm} I_C = -30 \text{ mA; } I_B = -1.5 \text{ mA} \\ \text{off-state input voltage} \hspace{0.5cm} V_{CE} = -5 \text{ V; } I_C = -100 \mu\text{A} \\ \text{on-state input voltage} \hspace{0.5cm} V_{CE} = -300 \text{ mV; } I_C = -20 \text{ mA} \\ \text{bias resistor 1 (input)} \\ \text{bias resistor ratio} \hspace{0.5cm} 0.8 \hspace{0.5cm} 1 \\ \text{collector capacitance} \hspace{0.5cm} V_{CB} = -10 \text{ V; } I_E = i_e = 0 \text{ A;} \\ \text{-} \hspace{0.5cm} - \\ \text{-} \end{array} \hspace{0.5cm} - \\ \text{-} \end{array} \hspace{0.5cm} - \\ \text{-} $	$ \begin{array}{c} \text{collector-base cut-off current} & V_{CB} = -50 \text{ V}; \ I_E = 0 \text{ A} & - & - & -100 \\ \\ \text{collector-emitter} & V_{CE} = -30 \text{ V}; \ I_B = 0 \text{ A} & - & - & -1 \\ \\ \text{cut-off current} & V_{CE} = -30 \text{ V}; \ I_B = 0 \text{ A}; \\ \\ T_j = 150 ^{\circ}\text{C} & - & - & -50 \\ \\ \text{emitter-base cut-off current} & V_{EB} = -5 \text{ V}; \ I_C = 0 \text{ A} & - & - & -4 \\ \\ \text{DC current gain} & V_{CE} = -5 \text{ V}; \ I_C = -40 \text{ mA} & 30 & - & - \\ \text{collector-emitter} & I_C = -30 \text{ mA}; \ I_B = -1.5 \text{ mA} & - & - & -150 \\ \\ \text{off-state input voltage} & V_{CE} = -5 \text{ V}; \ I_C = -100 \mu\text{A} & - & -1.3 & -0.5 \\ \text{on-state input voltage} & V_{CE} = -300 \text{ mV}; \ I_C = -20 \text{ mA} & -2 & -1.7 & - \\ \\ \text{bias resistor 1 (input)} & 0.7 & 1 & 1.3 \\ \\ \text{bias resistor ratio} & 0.8 & 1 & 1.2 \\ \\ \text{collector capacitance} & V_{CB} = -10 \text{ V}; \ I_E = i_e = 0 \text{ A}; & - & - & - & 2 \\ \\ \end{array}$

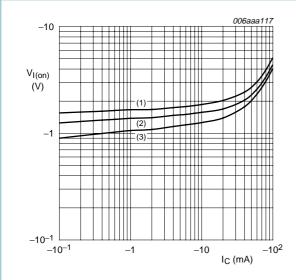

$$V_{CE} = -5 \text{ V}$$

(1)
$$T_{amb} = 100 \, ^{\circ}C$$

(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3) $T_{amb} = -40 \, ^{\circ}C$

Fig 1. DC current gain as a function of collector current; typical values

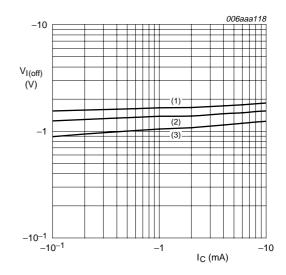

$$I_{\rm C}/I_{\rm B} = 20$$

(1)
$$T_{amb} = 100 \, ^{\circ}C$$

(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3)
$$T_{amb} = -40 \, ^{\circ}C$$

Fig 2. Collector-emitter saturation voltage as a function of collector current; typical values



(1)
$$T_{amb} = -40 \, ^{\circ}C$$

(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3) $T_{amb} = 100 \, ^{\circ}C$

Fig 3. On-state input voltage as a function of collector current; typical values

$$V_{CE} = -5 \text{ V}$$

(1)
$$T_{amb} = -40 \, ^{\circ}C$$

(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3) $T_{amb} = 100 \, ^{\circ}C$

Fig 4. Off-state input voltage as a function of collector current; typical values

8. Package outline

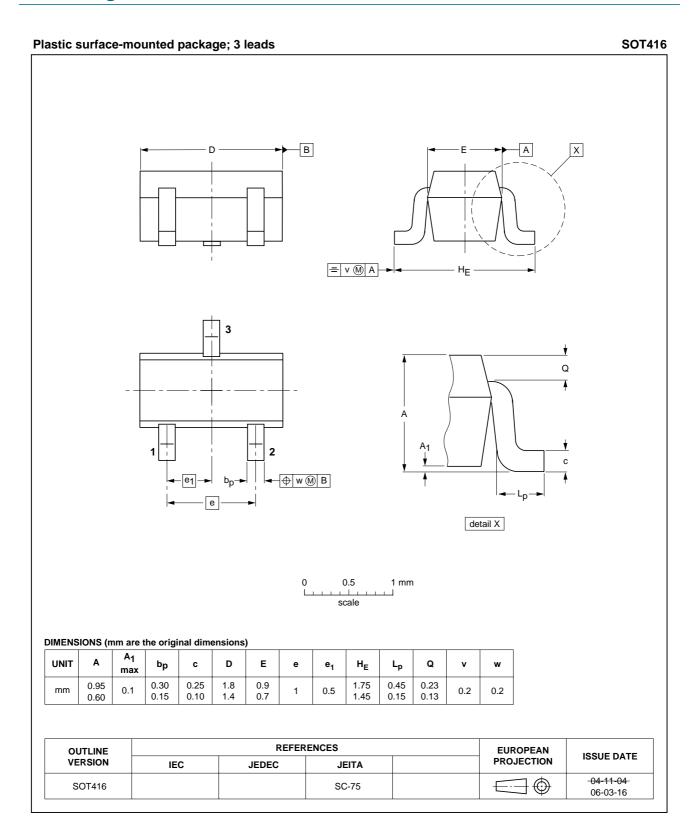
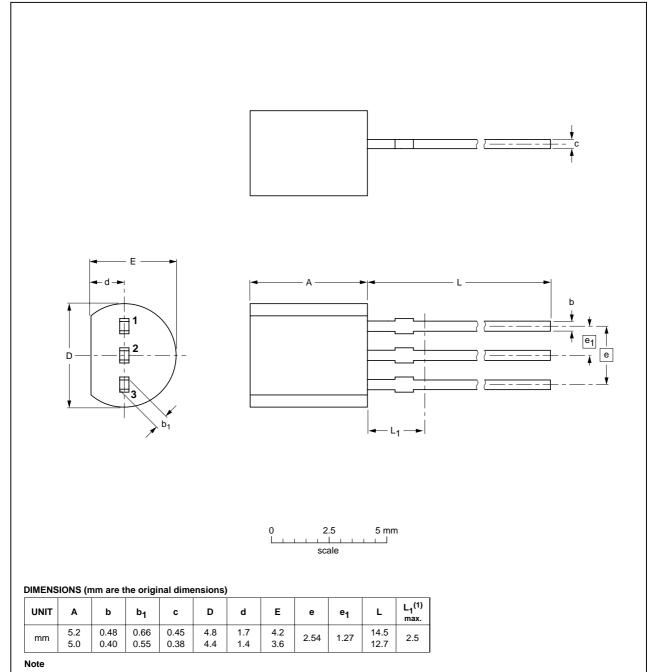


Fig 5. Package outline SOT416 (SC-75)

SOT346 Plastic surface-mounted package; 3 leads Α В X = v M A H_{E} 3 Q 2 - + w M B detail X е **DIMENSIONS** (mm are the original dimensions) UNIT A₁ D Ε $\mathbf{H}_{\mathbf{E}}$ Α bp С Q е e₁ L_{p} w 1.3 0.1 0.50 0.26 0.33 3.1 1.7 3.0 0.6 0.95 0.2 1.9 0.2 0.35 0.10 1.3 **REFERENCES EUROPEAN** OUTLINE ISSUE DATE PROJECTION VERSION IEC **JEDEC** JEITA -04-11-11 \bigcirc SOT346 TO-236 SC-59A 06-03-16

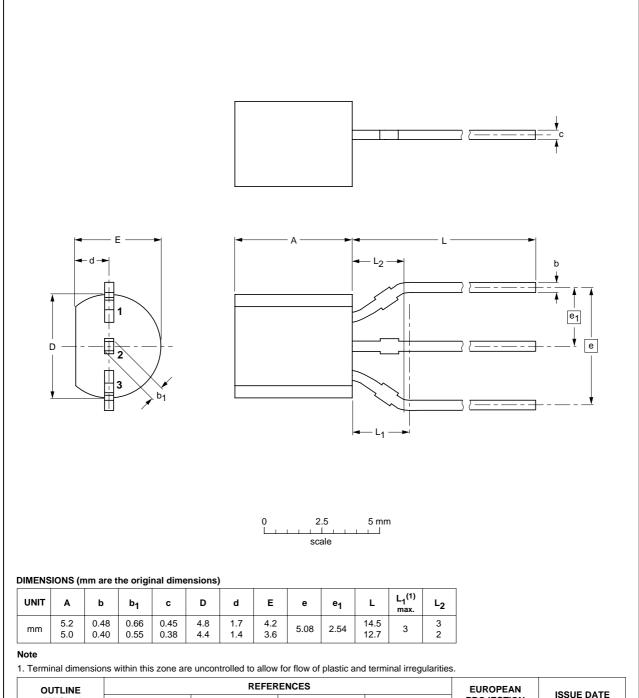

Fig 6. Package outline SOT346 (SC-59A/TO-236)

Leadless ultra small plastic package; 3 solder lands; body 1.0 x 0.6 x 0.5 mm **SOT883** e₁ 0.5 | 1 mm **DIMENSIONS (mm are the original dimensions)** A₁ max. A⁽¹⁾ UNIT b b_1 D Ε e₁ L L_{1} 0.30 0.55 0.30 0.50 0.20 0.62 1.02 mm 0.03 0.35 0.46 0.12 0.47 0.55 0.95 0.22 0.22 1. Including plating thickness REFERENCES OUTLINE **EUROPEAN** ISSUE DATE VERSION **PROJECTION JEDEC** 03-02-05 \bigcirc SOT883 SC-101 03-04-03

Fig 7. Package outline SOT883 (SC-101)

Plastic single-ended leaded (through hole) package; 3 leads

SOT54

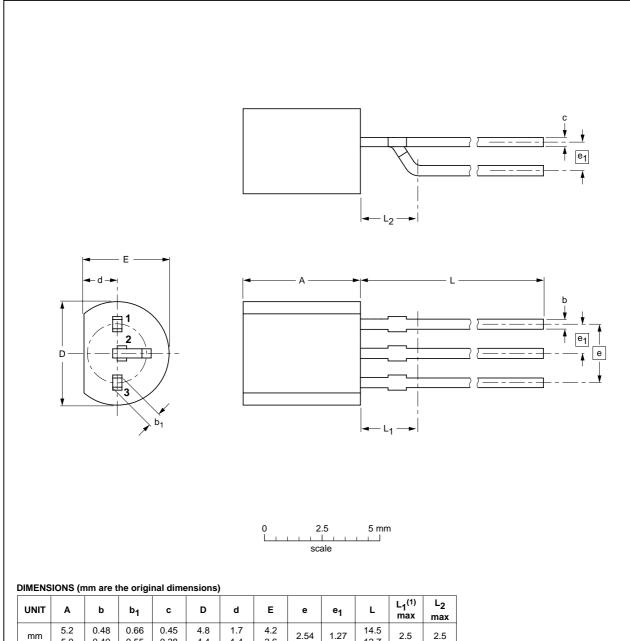

1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.

OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT54		TO-92	SC-43A			-04-06-28- 04-11-16

Fig 8. Package outline SOT54 (SC-43A/TO-92)

Plastic single-ended leaded (through hole) package; 3 leads (wide pitch)

SOT54A



OUTLINE		REFERENCES EUROPEAN JOSEPH				ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	133UE DATE	
SOT54A						97-05-13 04-06-28	

Fig 9. Package outline SOT54A

Plastic single-ended leaded (through hole) package; 3 leads (on-circle)

SOT54 variant

UNIT	A	b	b ₁	С	D	d	E	е	e ₁	L	L ₁ ⁽¹⁾ max	L ₂ max	
mm	5.2 5.0	0.48 0.40	0.66 0.55	0.45 0.38	4.8 4.4	1.7 1.4	4.2 3.6	2.54	1.27	14.5 12.7	2.5	2.5	

1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.

OUTLINE	REFERENCES			EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT54 variant						04-06-28 05-01-10

Fig 10. Package outline SOT54 variant

SOT23 Plastic surface-mounted package; 3 leads В Α Х = v M A H_{E} 3 2 e₁ **→** | w (M) B е detail X **DIMENSIONS** (mm are the original dimensions) Α₁ UNIT D Ε Α bp С \mathbf{H}_{E} L_{p} Q е e₁ w max. 0.48 0.15 3.0 0.45 0.55 1.1 1.4 2.5 0.1 0.95 0.2 1.9 0.1 0.38 1.2 **REFERENCES EUROPEAN** OUTLINE ISSUE DATE PROJECTION VERSION IEC **JEDEC** JEITA 04-11-04 SOT23 TO-236AB 06-03-16

Fig 11. Package outline SOT23 (TO-236AB)

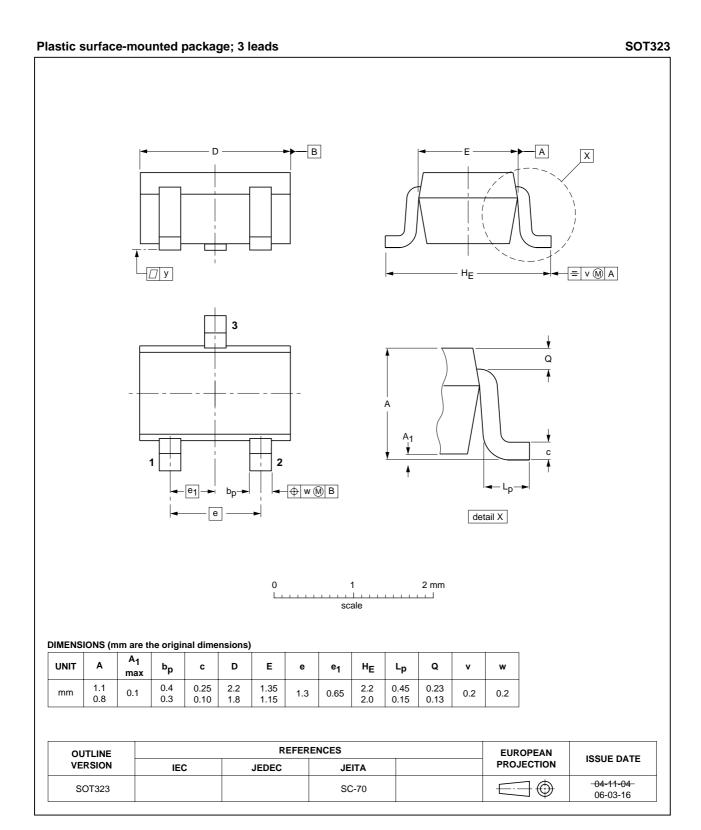


Fig 12. Package outline SOT323 (SC-70)

9. Packing information

Table 9. Packing methods

The indicated -xxx are the last three digits of the 12NC ordering code. [1]

Type number	Package	Description	Packing quantity			
			3000	5000	10000	
PDTA113EE	SOT416	4 mm pitch, 8 mm tape and reel	-115	-	-135	
PDTA113EK	SOT346	4 mm pitch, 8 mm tape and reel	-115	-	-135	
PDTA113EM	SOT883	2 mm pitch, 8 mm tape and reel	-	-	-315	
PDTA113ES	SOT54	bulk, straight leads	-	-412	-	
	SOT54A	tape and reel, wide pitch	-	-	-116	
	SOT54A	tape ammopack, wide patch	-	-	-126	
	SOT54 variant	bulk, delta pinning	-	-112	-	
PDTA113ET	SOT23	4 mm pitch, 8 mm tape and reel	-215	-	-235	
PDTA113EU	SOT323	4 mm pitch, 8 mm tape and reel	-115	-	-135	

^[1] For further information and the availability of packing methods, see Section 12.

10. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
PDTA113E_SER_5	20090902	Product data sheet	-	PDTA113E_SER_4		
Modifications:		eet was changed to reflect w legal definitions and disc				
	• Figure 5 "Pa	ckage outline SOT416 (SC	<u>-75)"</u> updated			
	 Figure 6 "Pa 	 Figure 6 "Package outline SOT346 (SC-59A/TO-236)" updated Figure 11 "Package outline SOT23 (TO-236AB)" updated 				
	• Figure 11 "P					
	 Figure 12 "P 	ackage outline SOT323 (So	<u>C-70)"</u> updated			
PDTA113E_SER_4	20050405	Product data sheet	-	PDTA113ET_3		
PDTA113ET_3	20040720	Objective data sheet	-	PDTA113ET_2		
PDTA113ET_2	20040415	Objective data sheet	-	PDTA113ET_1		
PDTA113ET_1	20040316	Objective data sheet	-	-		

11. Legal information

11.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

11.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

11.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

11.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17 of 18

12. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com