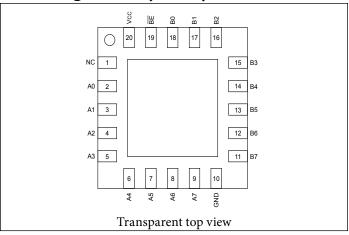
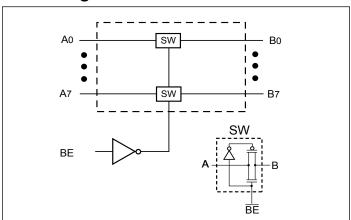


3.3V, Hot Insertion, 8-Bit, 2-Port NanoSwitch™


Features

- → Near-Zero propagation delay
- → 5-ohm switches connect inputs to outputs
- → Fast Switching Speed: 4.5ns (max.)
- → Ultra-Low Quiescent Power (0.2µA Typical)
 - Ideally suited for notebook applications
- → TTL-compatible control of inputs levels
- → ESD protection (2kV Human Body Model and 200V Machine Model)
- → Packaging (Pb-free & Green):
 - 20-pin SOIC (S)
 - 20-pin QSOP (Q)
 - 20-pin UQFN (ZUA)
 - 20-pin TSSOP (L)

Pin Configuration (SOIC, QSOP, TSSOP)


Pin Configuration (UQFN)

Description

The PI3B3245 is a 3.3V 8-bit, 2-port bus switch designed with a low On-Resistance (5-ohm) allowing inputs to be connected directly to outputs. The bus switch creates no additional propagational delay or additional ground bounce noise. The switches are turned ON by the Bus Enable $(\overline{\rm BE})$ input signal.

Block Diagram

Truth Table

Function	BE	A0-7
Disconnect	Н	Hi-Z
Connect	L	B0-7

Note:

H = High Voltage Level, L = Low Voltage Level, Hi-Z = High Impedance

Pin Description

Pin Name	Description	
$\overline{\mathrm{BE}}$	Bus Enable Input (Active LOW)	
A0-7	Bus A	
B0-7	Bus B	
GND	Ground (1)	
V _{CC}	Power	

Note 1: UQFN20 package die supply ground is connected to both GND pin and exposed center pad. GND pin must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the PCB in the thermal pad region.

Absolute Maximum Ratings

Parameter		Max.	Units
Storage Temperature		150	°C
Ambient Temperature with Power Applied		85	°C
Supply Voltage to Ground Potential		4.6	V
DC Input Voltage		4.6	V
DC Output Current		120	mA
Power Dissipation	-	0.5	W

Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 3.3V \pm 10$ %)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. (2)	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
V _{IL}	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	V
I _{IH}	Input HIGH Current	V _{CC} = Max., V _{IN} = V _{CC}			±1	μA
I _{IL}	Input LOW Current	V _{CC} = Max., V _{IN} = GND			±1	μA
I _{OZH}	High Impedance Output Current	$0 \le A_N, B_N \le V_{CC}$			±1	μA
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18 \text{ mA}$			-1.2	V
R _{ON}	Switch On Resistance ⁽³⁾	$V_{CC} = Min., \ V_{IN} = 0.0V, \ I_{ON} = 48mA$ or $64mA$		5	8	Ω
		$V_{CC} = Min, V_{IN} = 2.4V, I_{ON} = 15mA$		10	17	

Notes:

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур.	Units
C_{IN}	Input Capacitance	$V_{IN} = 0V$	3.0	pF
C _{OFF}	A/B Capacitance, Switch Off	$V_{IN} = 0V$	8.0	pF
Con	A/B Capacitance, Switch On	$V_{\rm IN} = 0V$	16.0	pF

Notes:

1. This parameter is determined by device characterization but is not production tested.

^{1.} For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

^{2.} Typical values are at Vcc = 3.3V, TA = 25°C ambient and maximum loading.

^{3.} Measured by the voltage drop between A and B pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A,B) pins.

Power Supply Characteristics

Parameters	Description	Test Conditions(1)		Min.	Typ. (2)	Max.	Units
I_{CC}	Quiescent Power Supply Current	V _{CC} = Max.	$V_{IN} = GND \text{ or } V_{CC}$		0.1	3.0	μΑ
ΔI_{CC}	Supply Current per Input HIGH	$V_{CC} = Max.$	$V_{IN} = 3.0V^{(3)}$			750	μΑ

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at Vcc = 3.3V, $+25^{\circ}C$ ambient.
- 3. Per TTL driven input (control input only); A and B pins do not contribute to Icc.

Switching Characteristics over Operating Range

			Com.		
Parameters	Description	Test Conditions	Min.	Max.	Units
t _{PLH} t _{PHL}	Propagation Delay ^(1,2) Ax to Bx, Bx to Ax			0.25	
t _{PZH} t _{PZL}	Bus Enable Time BE to Ax or Bx	CL = 50 pF $RL = 500\Omega$	1.0	4.0	ns
t _{PHZ} t _{PLZ}	Bus Disable Time BE to Ax or Bx		1.0	4.5	

Notes:

Applications Information

Logic Inputs

The logic control inputs can be driven up to +3.6V regardless of the supply voltage. For example, given a +3.3V supply, A_N may be driven low to 0V and high to 3.6V. Driving B_N Rail-to-Rail® minimizes power consumption.

Power-Supply Sequencing and Hot-Plug Information

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} and GND before applying signals to input/output or control pins.

Rail-to-Rail is a registeredtrademark of Nippon Motorola, Ltd.

^{1.} This parameter is guaranteed but not tested on Propagation Delays.

^{2.} The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Part Marking

S Package

YY: Year

WW: Workweek

1st X: Assembly Site Code 2nd X: Wafer Fab Site Code

ZUA Package

PI3B32 45ZUAE_ YYWWXX

YY: Year

WW: Workweek

1st X: Assembly Site Code

2nd X: Fab Site Code

Q Package

YY: Year

WW: Workweek

1st X: Assembly Site Code 2nd X: Fab Site Code

Bar above fab code means Cu wire

Without bar above fab code means Au wire

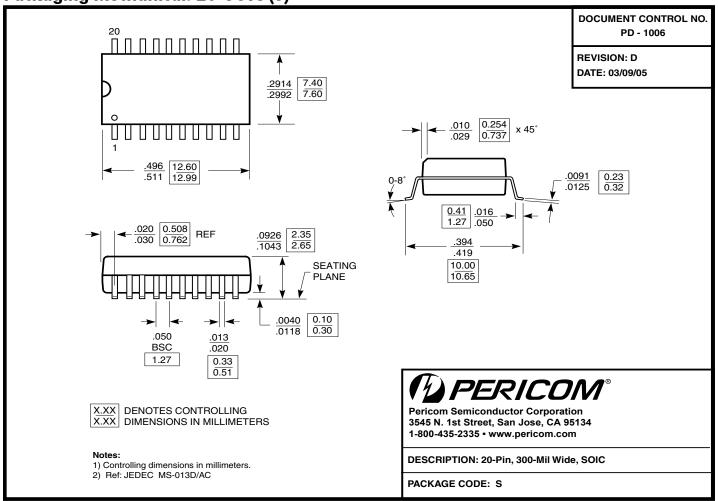
L Package

PI3B 3245LE YYWWXX

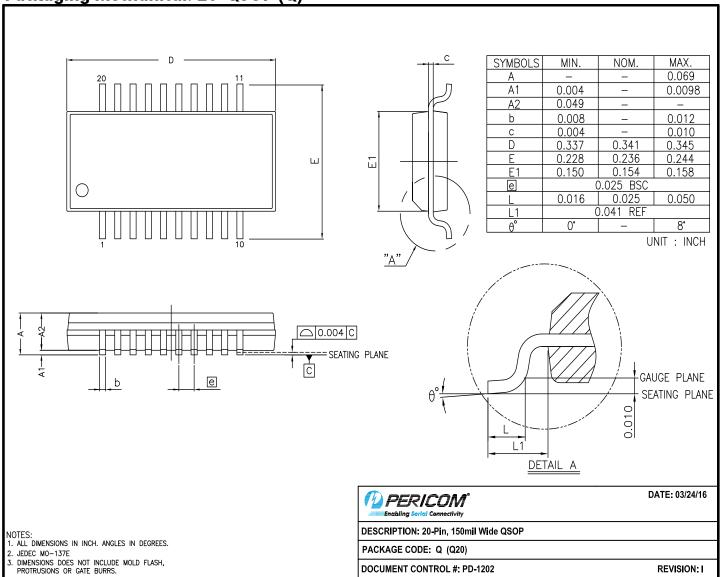
YY: Year

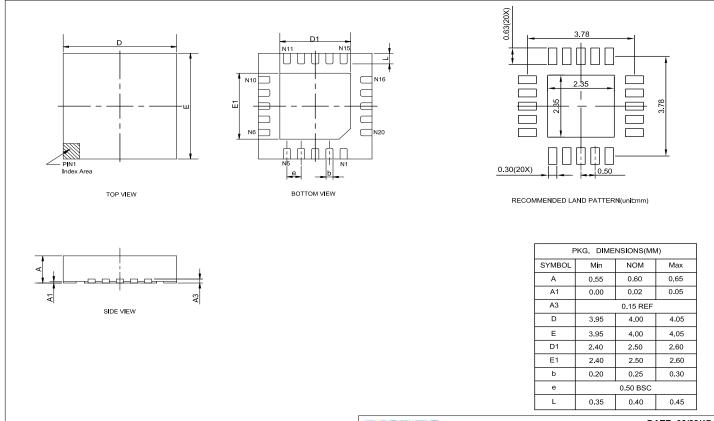
WW: Workweek

1st X: Assembly Code


2nd X: Fab Code

4


Packaging Mechanical: 20-SOIC (S)

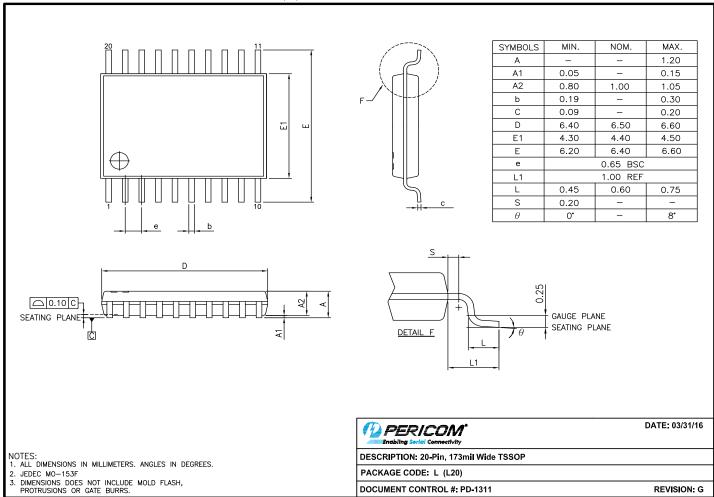


16 0057

Packaging Mechanical: 20-UQFN (ZUA)

Note:

1. Comly with JEDEC MO-248K, except 'A3', 'D1' and 'E1'.


DIODES PERICOM	DATE: 03/29/17	
DESCRIPTION: 20-Pin, UQFN, 4x4		
PACKAGE CODE: ZUA (ZUA20)		
DOCUMENT CONTROL #: PD-2223	REVISION: -	

17-0031

Packaging Mechanical: 20-TSSOP (L)

16-0074

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Package Type
PI3B3245SEX	S	20-pin, 300Mil Wide (SOIC)
PI3B3245QEX	Q	20-pin, 150mil Wide (QSOP)
PI3B3245ZUAEX	ZUA	20-pin, 4x4 (UQFN)
PI3B3245LEX	L	20-pin, 173mil Wide (TSSOP)

Notes:

- 1. EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.
- 2. See http://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. Thermal characteristics can be found on the company web site at www.diodes.com/design/support/packaging/
- 3. E = Pb-free and Green
- 4. X suffix = Tape/Reel