



3.3V, Hot Insertion, 8-Bit, 2-Port NanoSwitch<sup>™</sup>

#### **Features**

- → Near-Zero propagation delay
- $\rightarrow$  5-ohm switches connect inputs to outputs
- → Fast Switching Speed: 4.5ns (max.)
- → Ultra-Low Quiescent Power (0.2µA Typical)
  - Ideally suited for notebook applications
- → TTL-compatible control of inputs levels
- → ESD protection (2kV Human Body Model and 200V Machine Model)
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

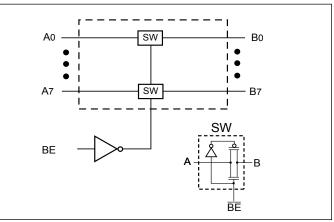
- → Packaging (Pb-free & Green):
  - □ 20-pin SOIC (S)
  - □ 20-pin QSOP (Q)
  - □ 20-pin TSSOP (L)

#### **Truth Table**

| Function   | BE | A0-7 |
|------------|----|------|
| Disconnect | Н  | Hi-Z |
| Connect    | L  | B0-7 |

Note:

H = High Voltage Level, L = Low Voltage Level, Hi-Z = High Impedance

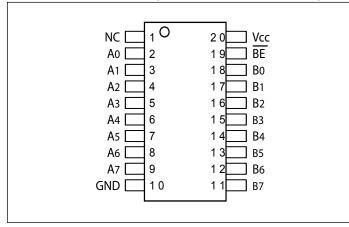

#### Notes:

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

#### Description

The PI3B3245 is a 3.3V 8-bit, 2-port bus switch designed with a low On-Resistance (5-ohm) allowing inputs to be connected directly to outputs. The bus switch creates no additional propagational delay or additional ground bounce noise. The switches are turned ON by the Bus Enable ( $\overline{BE}$ ) input signal.

### Block Diagram




<sup>1.</sup> No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.





## Pin Configuration (SOIC, QSOP, TSSOP)



## **Pin Description**

| Pin#                           | Pin Name        | Description                   |
|--------------------------------|-----------------|-------------------------------|
| 19                             | BE              | Bus Enable Input (Active LOW) |
| 2, 3, 4, 5, 6, 7, 8, 9         | A0-7            | Bus A                         |
| 18, 17, 16, 15, 14, 13, 12, 11 | B0-7            | Bus B                         |
| 10                             | GND             | Ground <sup>(1)</sup>         |
| 20                             | V <sub>CC</sub> | Power                         |
| 1                              | NC              | Not Connected                 |

Note 1: UQFN20 package die supply ground is connected to both GND pin and exposed center pad. GND pin must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the PCB in the thermal pad region.





# **Absolute Maximum Ratings**

| Parameter                              |      | Max. | Units |
|----------------------------------------|------|------|-------|
| Storage Temperature                    | -65  | 150  | °C    |
| Ambient Temperature with Power Applied |      | 85   | °C    |
| Supply Voltage to Ground Potential     | -0.5 | 4.6  | V     |
| DC Input Voltage                       | -0.5 | 4.6  | V     |
| DC Output Current                      | -    | 120  | mA    |
| Power Dissipation                      | -    | 0.5  | W     |

Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

### **DC Electrical Characteristics** (Over the Operating Range, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C, $V_{CC} = 3.3$ V $\pm 10\%$ )

| Parameters       | Description                         | Test Conditions <sup>(1)</sup>                          | Min. | <b>Typ.</b> <sup>(2)</sup> | Max. | Units |
|------------------|-------------------------------------|---------------------------------------------------------|------|----------------------------|------|-------|
| V <sub>IH</sub>  | Input HIGH Voltage                  | Guaranteed Logic HIGH Level                             | 2.0  |                            |      | V     |
| V <sub>IL</sub>  | Input LOW Voltage                   | Guaranteed Logic LOW Level                              | -0.5 |                            | 0.8  | V     |
| I <sub>IH</sub>  | Input HIGH Current                  | $V_{CC} = Max., V_{IN} = V_{CC}$                        |      |                            | ±1   | μΑ    |
| I <sub>IL</sub>  | Input LOW Current                   | V <sub>CC</sub> = Max., V <sub>IN</sub> = GND           |      |                            | ±1   | μΑ    |
| I <sub>OZH</sub> | High Impedance Output Current       | $0 \le A_N, B_N \le V_{CC}$                             |      |                            | ±1   | μA    |
| V <sub>IK</sub>  | Clamp Diode Voltage                 | $V_{CC}$ = Min., $I_{IN}$ = -18 mA                      |      |                            | -1.2 | V     |
| R <sub>ON</sub>  | Switch On Resistance <sup>(3)</sup> | $V_{CC} = Min., V_{IN} = 0.0V, I_{ON} = 48mA$ or $64mA$ |      | 5                          | 8    | Ω     |
|                  |                                     | $V_{CC} = Min, V_{IN} = 2.4V, I_{ON} = 15mA$            |      | 10                         | 17   |       |

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 3.3V, TA = 25°C ambient and maximum loading.

3. Measured by the voltage drop between A and B pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A,B) pins.

## Capacitance $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$

| Parameters <sup>(1)</sup> | Description                 | Test Conditions   | Тур. | Units |
|---------------------------|-----------------------------|-------------------|------|-------|
| CIN                       | Input Capacitance           | $V_{\rm IN} = 0V$ | 3.0  | pF    |
| Coff                      | A/B Capacitance, Switch Off | $V_{\rm IN} = 0V$ | 8.0  | pF    |
| Con                       | A/B Capacitance, Switch On  | $V_{\rm IN} = 0V$ | 16.0 | pF    |

Notes:

1. This parameter is determined by device characterization but is not production tested.





# **Power Supply Characteristics**

| Parameters      | Description                    | Test Conditions <sup>(1)</sup> |                                   | Min. | <b>Typ.</b> <sup>(2)</sup> | Max. | Units |
|-----------------|--------------------------------|--------------------------------|-----------------------------------|------|----------------------------|------|-------|
| I <sub>CC</sub> | Quiescent Power Supply Current | V <sub>CC</sub> = Max.         | $V_{IN} = GND \text{ or } V_{CC}$ |      | 0.1                        | 3.0  | μΑ    |
| $\Delta I_{CC}$ | Supply Current per Input HIGH  | V <sub>CC</sub> = Max.         | $V_{\rm IN} = 3.0 V^{(3)}$        |      |                            | 750  | μΑ    |

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

3. Per TTL driven input (control input only); A and B pins do not contribute to Icc.

# Switching Characteristics over Operating Range

|                                      |                                                          |                                       | Com. |      |       |
|--------------------------------------|----------------------------------------------------------|---------------------------------------|------|------|-------|
| Parameters                           | Description                                              | Test Conditions                       | Min. | Max. | Units |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay <sup>(1,2)</sup><br>Ax to Bx, Bx to Ax |                                       |      | 0.25 |       |
| t <sub>PZH</sub><br>t <sub>PZL</sub> | Bus Enable Time<br>BE to Ax or Bx                        | $CL = 50 \text{ pF}$ $RL = 500\Omega$ | 1.0  | 4.0  | ns    |
| t <sub>PHZ</sub><br>t <sub>PLZ</sub> | Bus Disable Time<br>BE to Ax or Bx                       |                                       | 1.0  | 4.5  |       |

Notes:

1. This parameter is guaranteed but not tested on Propagation Delays.

2. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

# Applications Information

#### Logic Inputs

The logic control inputs can be driven up to +3.6V regardless of the supply voltage. For example, given a +3.3V supply, A<sub>N</sub> may be driven low to 0V and high to 3.6V. Driving B<sub>N</sub> Rail-to-Rail® minimizes power consumption.

#### Power-Supply Sequencing and Hot-Plug Information

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V<sub>CC</sub> and GND before applying signals to input/output or control pins.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.





# **Part Marking**

S Package



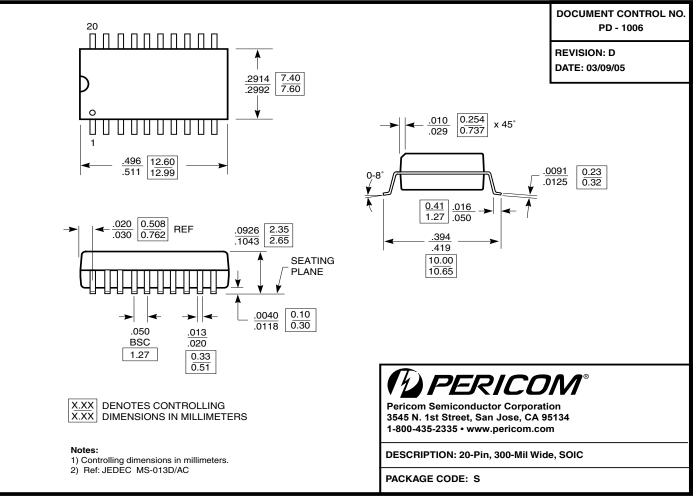
YY: Year WW: Workweek 1st X: Assembly Site Code 2nd X: Wafer Fab Site Code

L Package



YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

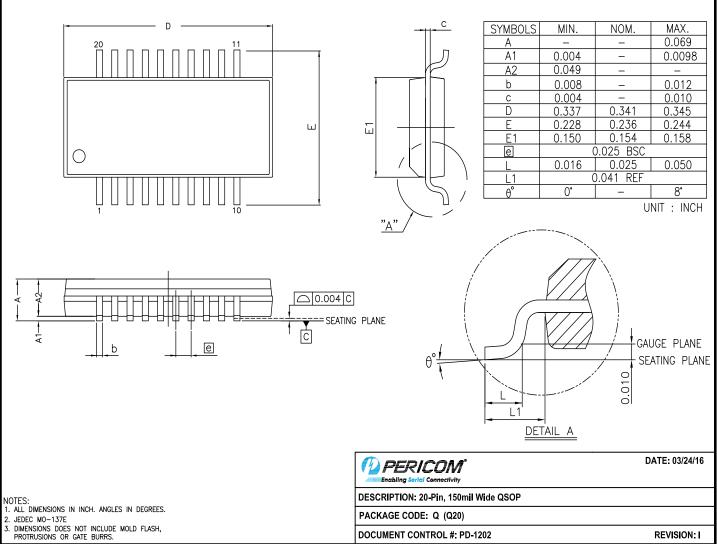
Q Package




YY: Year WW: Workweek 1st X: Assembly Site Code 2nd X: Fab Site Code Bar above fab code means Cu wire Without bar above fab code means Au wire





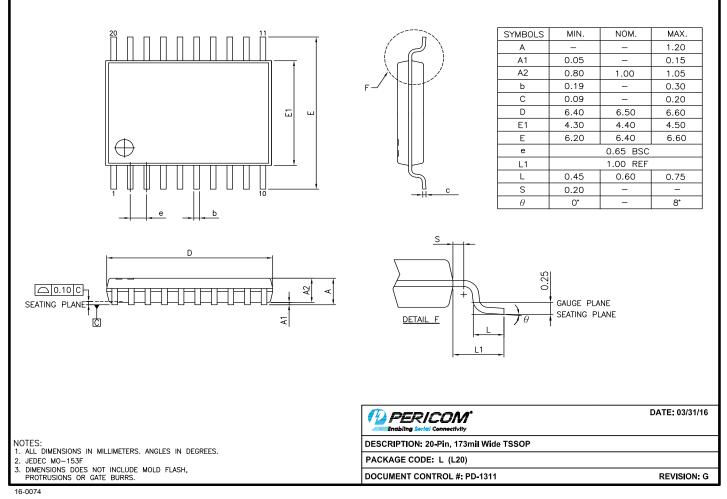

# Packaging Mechanical: 20-SOIC (S)







# Packaging Mechanical: 20-QSOP (Q)




16-0057





## Packaging Mechanical: 20-TSSOP (L)



#### For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

## **Ordering Information**

| Ordering Code | Package Code | Package Type                |
|---------------|--------------|-----------------------------|
| PI3B3245SEX   | S            | 20-pin, 300Mil Wide (SOIC)  |
| PI3B3245QEX   | Q            | 20-pin, 150mil Wide (QSOP)  |
| PI3B3245LEX   | L            | 20-pin, 173mil Wide (TSSOP) |

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel