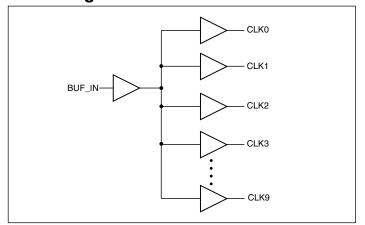


1-10 Clock Buffer for Networking Applications

Features

- → Maximum Frequency up to 156 MHz
- → High-speed, low-noise, non-inverting 1-10 buffer
- → Low-skew (<250ps) between any two output clocks
- → Low duty cycle distortion <250ps
- → Low propagation delay <2.5ns
- → Multiple VDD, GND pins for noise reduction
- → 3.3V supply voltage with 5V input tolerant
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

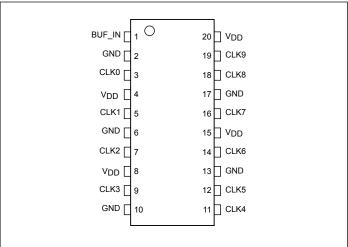

- → Packages (Pb-free & Green Available):
 - 20-pin 209-mil wide SSOP (H)
 - 20-pin 150-mil wide QSOP (Q)

Description

The PI49FCT3807D is a 3.3V high-speed, low-noise 1-10 non-inverting clock buffer. The key goal in designing the PI49FCT3807D is to target networking applications that require low-skew, low-jitter, and high-frequency clock distribution.

Providing output-to-output skew as low as 250ps, the PI49F-CT3807D is an ideal clock distribution device for synchronous systems. Designing synchronous networking systems requires a tight level of skew from a large number of outputs.

Block Diagram



- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Configuration

Pin Description

Pin Name	Description	
BUF_IN	Input	
CLK [0:9]	Outputs	
GND	Ground	
V_{DD}	Power	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	-65°C to +150°C
V _{DD} Voltage	-0.5V to +4.6V
Output Voltage	0.5V to V _{DD} +0.5V
Input Voltage	-0.5V to +5.5V
Junction Temperature	Max. 125°C

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Operating Range

V_{DD} Voltage	
Industrial Temperature—40°C to +105°	
Input Frequency	Iz

DC Electrical Characteristics (Over the Operating Range)

Parameters	Description	Test Conditions ⁽¹⁾	Test Conditions ⁽¹⁾		Typ. (2)	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH level (In	put Pins)	2.0		5.5	V
V_{IL}	Input LOW Voltage	Guaranteed Logic LOW level (In	put Pins)	-0.5		0.8	V
I_{IH}	Input HIGH Current	$V_{DD} = Max$	$V_{\rm IN} = 5.5 V$			1	4
I_{IL}	Input LOW Current	$V_{DD} = Max$	$V_{IN} = GND$			1	μΑ
V _{IK}	Clamp Diode Voltage	$V_{\rm DD}$ = Min. $I_{\rm IN}$ = -18mA			-0.7	-1.2	
V _{OH}	V _{OH} Output High Voltage	$V_{DD} = Min. V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = 0.1 \text{mA}$	V _{DD} - 0.2			
		$I_{OH} = -12$ mA	$I_{OH} = -12mA$	2.4 ⁽³⁾	3.0		V
7.7	Octobrid I OMA V-14	V M:- V V V	$I_{OL} = 0.1 \text{mA}$			0.2	
V _{OL} Output LOW Voltage	Output LOW Voltage	$V_{DD} = Min.$ $V_{IN} = V_{IH}$ or V_{IL} $I_{OL} = 12m.$	$I_{OL} = 12mA$		0.3	0.5	
I _{ODH}	Output HIGH Current	$V_{DD} = 3.3V$, $V_{IN} = V_{IH}$ or V_{IL} , $V_{OUT} = 1.5V^{(4, 5)}$		-45	-75	-180	A
I _{ODL}	Output LOW Current	$V_{\rm DD}$ = 3.3V, $V_{\rm IN}$ = $V_{\rm IH}$ or $V_{\rm IL}$, $V_{\rm IN}$	$OUT = 1.5V^{(4, 5)}$	50	80	200	mA

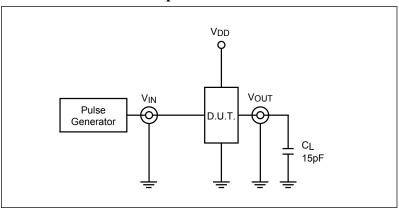
- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{DD} = 3.3V$, $+25^{\circ}C$ ambient and maximum loading.
- 3. $V_{OH} = V_{DD} 0.6V$ at rated current.
- 4. This parameter is determined by device characterization but is not production tested.
- 5. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. (2)	Max.	Units
I _{DDQ}	Quiescent Power Supply Current	$V_{DD} = Max.$	V_{IN} = GND or V_{DD}		0.1	30	4
$\Delta I_{ m DD}$	Supply Current per Inputs @ TTL HIGH	V _{DD} = Max.	$V_{IN} = V_{DD} - 0.6V^{(3)}$		47	300	μΑ
		50 MHz		43	55		
		V _{DD} = 3.6V, No Load	67 MHz		56	70	
т	Down and a Complex Comment		80 MHz		66	85	4
ID	I _D Dynamic Supply Current		100 MHz		81	105	mA
			125 MHz		97	125	
		156 MHz		121	155		

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{DD} = 3.3V$, +25°C ambient.
- 3. Per TTL driven input ($V_{IN} = V_{DD} 0.6V$); all other inputs at V_{DD} or GND.


Capacitance ($T_A = 25$ °C, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур	Max.	Units
C _{IN}	Input Capacitance	$V_{IN} = 0V$	3.0	4	"E
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$	_	6	pF

Note:

1. This parameter is determined by device characterization but is not production tested.

Test Circuits for All Outputs

Definitions:

 C_L = Load capacitance: includes jig and probe capacitance.

 R_T = Termination resistance, should be equal to Zout of the Pulse Generator.

Switching Characteristics ($V_{DD} = 3.3V \pm 0.3V$, $T_A = 85$ °C)

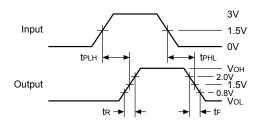
Parameters	Description	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
t _R /t _F	CLKn Rise/Fall Time 0.8V ~ 2.0V			0.8	1.0	
t _{PLH} t _{PHL}	Propagation Delay BUF_IN to CLKn		1.0	2.2	2.5	ns
t _{SK(o)} (3)	Skew between two outputs of the same package (same transition)	C _L = 15pF, 125 MHz		110	250	
$t_{SK(p)}^{(3)}$	Skew between opposite transitions (t _{PHL} -t _{PLH}) of the same output			200	250	ps
t _{SK(o)} (3)	Skew between two outputs of different package ⁽⁴⁾				550	

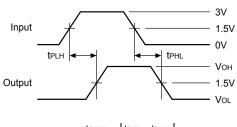
Notes:

- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. Skew measured at worse cast temperature (max. temp).
- 4. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

Switching Characteristics (V_{DD} = 3.3V \pm 0.3V, T_A = 105°C)

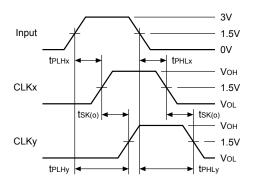
Parameters	Description	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
t _R /t _F	CLKn Rise/Fall Time 0.8V ~ 2.0V			0.8	1.0	
t _{PLH} t _{PHL}	Propagation Delay BUF_IN to CLKn		1.0	2.8	3.0	ns
t _{SK(o)} ⁽³⁾	Skew between two outputs of the same package (same transition)	C _L = 15pF, 125 MHz		110	250	
$t_{SK(p)}^{(3)}$	Skew between opposite transitions (t _{PHL} -t _{PLH}) of the same output			200	250	ps
t _{SK(o)} ⁽³⁾	Skew between two outputs of different package ⁽⁴⁾				550	


- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. Skew measured at worse cast temperature (max. temp).
- 4. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

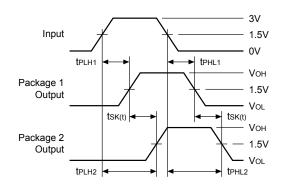


Switching Waveforms

Propagation Delay



Pulse Skew $-t_{SK(P)}$


tsk(p) = |tphl - tplh|

Output Skew - t_{SK(O)}

tsk(o) = |tPLHy - tPLHx| or |tPHLy - tPHLx|

Package Skew - t_{SK(T)}

tsk(t) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

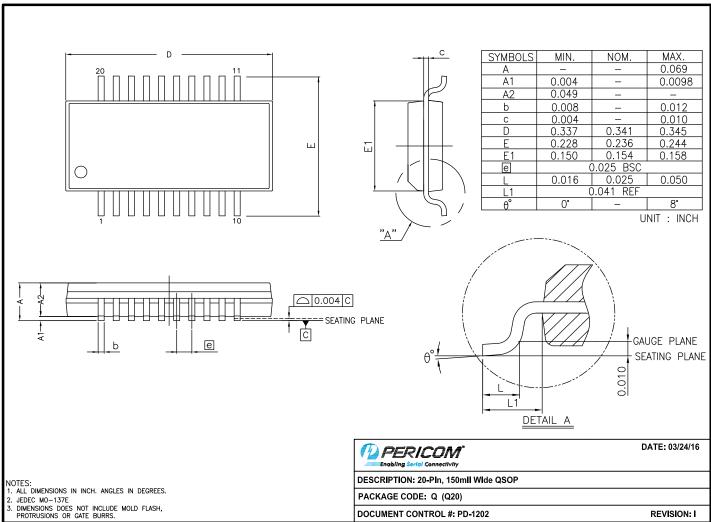
Part Marking

Q Package

B: Fab 2 Code YY: Year WW: Workweek 1st X: Assembly Code

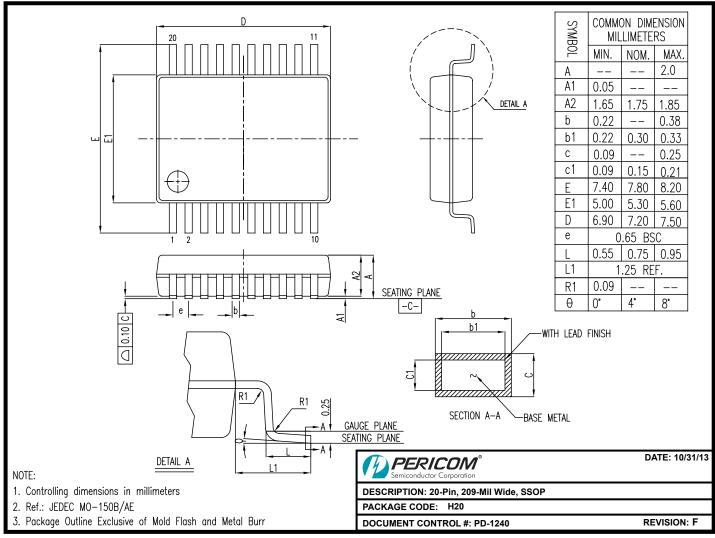
2nd X: Fab Code

H Package



YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical: 20-QSOP (Q)



16 0057

Packaging Mechanical: 20-SSOP (H)

13-0214

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Package Description
PI49FCT3807DQEX	Q	20-pin, 150-mil wide (QSOP)
PI49FCT3807DHEX	Н	20-pin, 209-mil wide (SSOP)

- $1.\ No\ purposely\ added\ lead.\ Fully\ EU\ Directive\ 2002/95/EC\ (RoHS),\ 2011/65/EU\ (RoHS\ 2)\ \&\ 2015/863/EU\ (RoHS\ 3)\ compliant.$
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. E = Pb-free and Green
- 5. X suffix = Tape/Reel