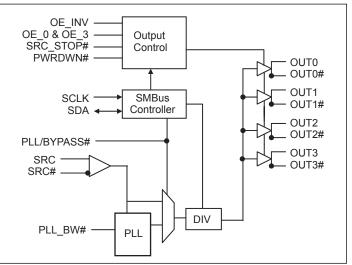


1:4 Clock Driver for Intel PCIe® 3.0 Chipsets

Features

- → Phase jitter filter for PCIe 3.0 application
- ➔ Four Pairs of Differential Clocks
- \rightarrow Low skew < 50ps
- → Low jitter < 50ps cycle-to-cycle
- \rightarrow < 1 ps additive RMS phase jitter
- → Output Enable for all outputs
- → Outputs tristate control via SMBus
- → Programmable PLL Bandwidth
- → 100 MHz PLL Mode operation
- → 100 400 MHz Bypass Mode operation
- → 3.3V Operation
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/


→ Packaging (Pb-free and Green): -28-Pin, SSOP (H28) -28-Pin, TSSOP (L28)

Description

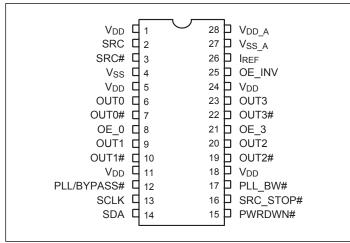
The PI6C20400B is a PCIe 3.0 compliant high-speed, low-noise differential clock buffer designed to be companion to PCIe 3.0 clock generator. It is backward compatible with PCIe 1.0 and 2.0 specification.

The device distributes the differential SRC clock from PCIe 3.0 clock generator to four differential pairs of clock outputs either with or without PLL. The clock outputs are controlled by input selection of SRC_STOP#, PWRDWN# and SMBus, SCLK and SDA. When input of either SRC STOP# or PWRDWN# is low, the output clocks are Tristated. When PWRDWN# is low, the SDA and SCLK inputs must be Tri-stated.

Block Diagram

Notes:

1


^{1.} No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

^{2.} See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Configuration

Pin Description

Pin#	Pin Name	Туре	Description
2,3	SRC & SRC#	Input	0.7V Differential SRC input from PI6C410 clock synthesizer
			3.3V LVTTL input for enabling outputs, active high.
8, 21	OE_0 & OE_3	Input	OE_0 for OUT0 / OUT0#
			OE_3 for OUT3 / OUT3#
25	OF DW	Turnet	3.3V LVTTL input for inverting the OE, SRC_STOP# and PWRDWN# pins.
25	OE_INV	Input	When $0 = \text{same stage}$
			When 1 = OE_0, OE_3, SRC_STOP#, PWRDWN# inverted.
6, 7, 9, 10, 19, 20, 22, 23	OUT[0:3] & OUT[0:3]#	Output	0.7V Differential outputs
12	PLL/BYPASS#	Input	3.3V LVTTL input for selecting fan-out of PLL operation.
13	SCLK	Input	SMBus compatible SCLOCK input
14	SDA	I/O	SMBus compatible SDATA
26	IREF	Input	External resistor connection to set the differential output current
16	SRC_STOP#	Input	3.3V LVTTL input for SRC stop, active low
17	PLL_BW#	Input	3.3V LVTTL input for selecting the PLL bandwidth
15	PWRDWN#	Input	3.3V LVTTL input for Power Down operation, active low
1, 5, 11, 18, 24	V _{DD}	Power	3.3V Power Supply for Outputs
4	VSS	Ground	Ground for Outputs
27	VSS_A	Ground	Ground for PLL
28	VDD_A	Power	3.3V Power Supply for PLL

Serial Data Interface (SMBus)

This part is a slave only SMBus device that supports indexed block read and indexed block write protocol using a single 7-bit address and read/write bit as shown below.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	1	1	0	0/1

Data Protocol

1 bit	7 bits	1	1	8 bits	1	8 bits	1	8 bits	1	8 bits	1	1 bit
Start bit	Slave Addr	R/W	Ack	Register offset	Ack	Byte Count = N	Ack	Data Byte 0	Ack	 Data Byte N - 1	Ack	Stop bit

Notes:

1. Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.

Data Byte 0: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
	Outputs Mode				
0	0 = Divide by 2	RW	1 = Normal	OUT[0:3], OUT[0:3]#	NA
	1 = Normal				
	PLL/BYPASS#				
1	0 = Fanout	RW	1 = PLL	OUT[0:3], OUT[0:3]#	NA
	1 = PLL				
	PLL Bandwidth				
2	0 = High Bandwidth,	RW	1 = Low	OUT[0:3], OUT[0:3]#	NA
	1 = Low Bandwidth				
3	Reserved				NA
4	Reserved				NA
5	Reserved				NA
	SRC_STOP#				
6	0 = Driven when stopped	RW	0 = Driven when stopped	OUT[0:3], OUT[0:3]#	NA
	1 = Tristate				
	PWRDWN#				
7	0 = Driven when stopped	RW	0 = Driven when stopped	OUT[0:3], OUT[0:3]#	NA
	1 = Tristate				

Data Byte 1: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0	Reserved				NA
1	OUTPUTS enable	RW	1 = Enabled	OUT0, OUT0#	NA
2	1 = Enabled 0 = Disabled	RW	1 = Enabled	OUT1, OUT1#	NA
3	Reserved				NA
4	Reserved				NA
5	OUTPUTS enable	RW	1 = Enabled	OUT2, OUT2#	NA
6	1 = Enabled 0 = Disabled	RW	1 = Enabled	OUT3, OUT3#	NA
7	Reserved				NA

Data Byte 2: Control Register

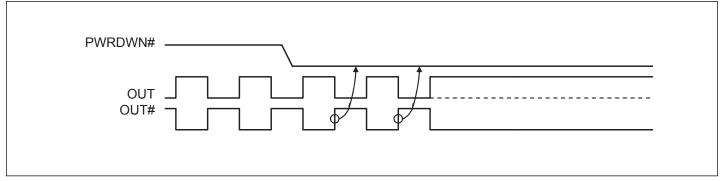
Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0	Reserved				NA
1	Allow control of OUTPUTS with	RW	0 = Free running	OUT0, OUT0#	NA
2	assertion of SRC_STOP# 0 = Free running 1 = Stopped with SRC_Stop#	RW	0 = Free running	OUT1, OUT1#	NA
3	Reserved				NA
-					
4	Reserved				NA
5	Allow control of OUTPUTS with	RW	0 = Free running	OUT2, OUT2#	NA
6	assertion of SRC_STOP# 0 = Free running 1 = Stopped with SRC_Stop#	RW	0 = Free running	OUT3, OUT3#	NA
7	Reserved				NA

Data Byte 3: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0		RW			
1		RW			
2		RW			
3	Decomrod	RW			
4	Reserved	RW			
5		RW			
6		RW			
7		RW			

Data Byte 3: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Pin
0		R	0	NA	NA
1		R	0	NA	NA
2		R	0	NA	NA
3	Pericom ID	R	0	NA	NA
4		R	0	NA	NA
5		R	1	NA	NA
6		R	0	NA	NA
7		R	0	NA	NA



Functionality

PWRDWN#	OUT	OUT#	SRC_Stop#	OUT	OUT#
1	Normal	Normal	1	Normal	Normal
0	$I_{REF} \times 2 \text{ or Float}$	Low	0	$I_{REF} \times 6$ or Float	Low

Power Down (PWRDWN# assertion)

Figure 1. Power down sequence

Power Down (PWRDWN# De-assertion)

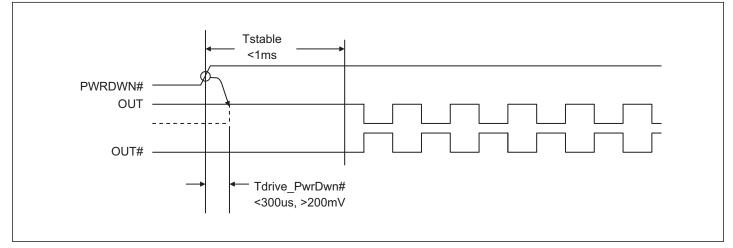
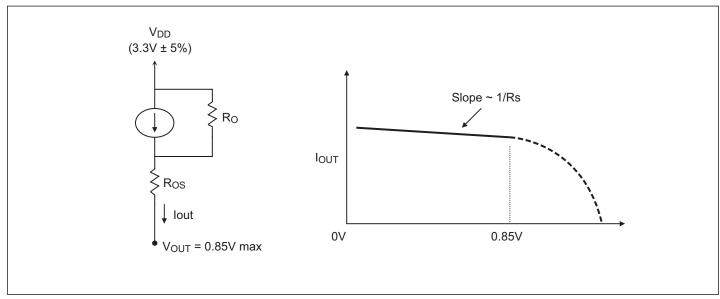



Figure 2. Power down de-assert sequence

Current-mode output buffer characteristics of OUT[0:3], OUT[0:3]#

Differential Clock Buffer characteristics

Symbol	Minimum	Maximum
R _o	3000Ω	N/A
R _{os}	unspecified	unspecified
V _{OUT}	N/A	850mV

Current Accuracy

Symbol	Conditions	Configuration	Load	Min.	Max.
I _{out}	$V_{_{ m DD}} = 3.30 \pm 5\%$	$R_{REF} = 475\Omega \ 1\%$ $I_{REF} = 2.32mA$	Nominal test load for given configuration	-12% I _{nominal}	+12% I _{nominal}

Note:

1. $\rm I_{\scriptscriptstyle NOMINAL}$ refers to the expected current based on the configuration of the device.

Differential Clock Output Current

Board Target Trace/Term Z	Reference R, Iref = $V_{DD}/(3xRr)$	Output Current	V _{он} @ Z
100Ω	$R_{\rm REF} = 475\Omega \ 1\%,$	I Gul	$0.7 \mathrm{V} \odot 50$
(100 Ω differential \approx 15% coupling ratio)	$I_{\text{REF}} = 2.32 \text{mA}$	$I_{OH} = 6 \times I_{REF}$	0.7V @ 50

Symbol	Parameters	Min.	Max.	Units
V _{DD_A}	3.3V Core Supply Voltage	-0.5	4.6	
V _{DD}	3.3V I/O Supply Voltage	-0.5	4.6	V
V _{IH}	Input High Voltage		4.6	v
V _{IL}	Input Low Voltage	-0.5		
Ts	Storage Temperature	-65	150	°C
V _{esd}	ESD Protection	2000		V
T _J	Junction Temperature		125	°C

Absolute Maximum Ratings (Over operating free-air temperature range)

Note:

1. Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Symbol	Parameters	Condition	Min.	Max.	Units	
V_{DD_A}	3.3V Core Supply Voltage		3.135	3.465		
V _{DD}	3.3V I/O Supply Voltage		3.135	3.465	V	
V _{IH}	3.3V Input High Voltage	V _{DD}	2.0	V _{DD} + 0.3		
V _{IL}	3.3V Input Low Voltage		V _{ss} - 0.3	0.8		
I	Input Leakage Current	$0 < V_{IN} < V_{DD}$	-5	+5	μA	
V _{OH}	3.3V Output High Voltage	$I_{OH} = -1mA$	2.4		V	
V _{ol}	3.3V Output Low Voltage	$I_{OL} = 1 m A$		0.4		
I _{OH}	Output High Current	$I_{OH} = 6 \ge I_{REF}$	12.2			
		$I_{REF} = 2.32 m A$		15.6	mA	
C _{IN}	Input Pin Capacitance		3	5	F	
C _{out}	Output Pin Capacitance			6	pF	
L_{pin}	Pin Inductance			7	nH	
$I_{\text{DD(BYPASS)}}$	Power Supply Current (PLL Bypass)	$V_{_{DD}} = 3.465V, F_{_{CPU}} = 100MHz$		90		
I _{DD}	Power Supply Current	$V_{DD} = 3.465 V$	Bypass mode	100	mA	
		$F_{CPU} = 100 MHz$	PLL mode	130		
I _{ss}	Power Down Current	Driven outputs		40		
I _{ss}	Power Down Current	Tristate outputs		12		
T _A	Ambient Temperature		-40	85	°C	

DC Electrical Characteristics ($V_{DD} = 3.3 \pm 5\%$, $V_{DD A} = 3.3 \pm 5\%$)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units	
F _{IN}	PLL Mode		95		105	MHz	
	Bypass Mode		100		400	MHz	
$T_{rise}^{}/T_{fall}^{2}$	Rise and Fall Time (measured be- tween 0.175V to 0.525V)		175		700	ps	
DT _{rise} / DT _{fall} ²	Rise and Fall Time Variation				125	ps	
T	PLL Mode				±250	ps	
T _{pd}	Non-PLL Mode		2.5		6.5	ns	
T ^{3,4}	Cycle – Cycle Jitter				50	ps	
$V_{\rm HIGH}^{2}$	Voltage High including overshoot		660		1150	mV	
V_{LOW}^{2}	Voltage Low including undershoot		-300			mV	
V _{cross} ²	Absolute crossing point voltages		250		550	mV	
DV _{cross} ²	Total Variation of Vcross over all edges				140	mV	
T _{DC} ³	Duty Cycle		45		55	%	
t _{jphPCIeG1}		PCIe Gen1		30	86	ps (p-p)	
L	Phase Jitter, PLL Mode	PCIE_2_0_8MHz_1_5M_H3_ STEP, Low Freq.		0.7	3	- ps (rms)	
t _{jphPCIeG2}		PCIE_2_0_8MHz_1_5M_H3_ STEP, High Freq.		2	3.1		
t _{jphPCIeG3}		PCIE_3_0_2MHz_5M_H3_ FIRST, Low Freq.		2	3		
		PCIE_3_0_2MHz_5M_H3_ FIRST, High Freq.		0.47	1		
t _{jphPCIeG1}		PCIe Gen1		0	0.001	ps (p-p)	
t	Additive Phase Jitter, Bypass Mode	PCIE_2_0_8MHz_1_5M_H3_ FIRST, Low Freq.		0	0.001	- ps (rms)	
		PCIE_2_0_8MHz_1_5M_H3_ FIRST, High Freq.		0	0.001		
t _{jphPCIeG3}		PCIE_3_0_2MHz_5M_H3_ FIRST, Low Freq.		0	0.001		
		PCIE_3_0_2MHz_5M_H3_ FIRST, High Freq.		0	0.001		

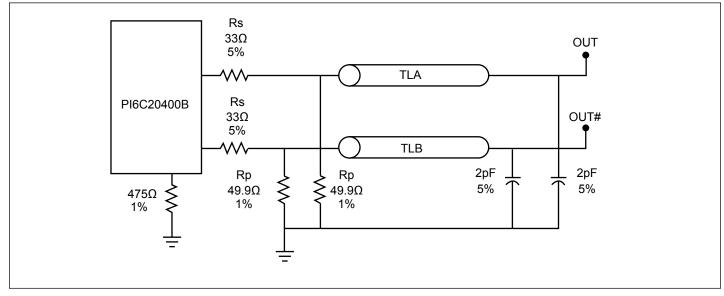
AC Switching Characteristics (V $_{\rm DD}=$ 3.3 \pm 5%, V $_{\rm DD A}=$ 3.3 \pm 5%)

Notes:

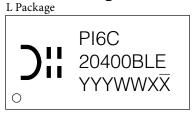
1. Test configuration is $R_s = 33.2\Omega$, $Rp = 49.9\Omega$, and 2pF.

2. Measurement taken from Single Ended waveform.

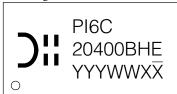
3. Measurement taken from Differential waveform.


4. Measurement taken using M1 data capture analysis tool.

5. Additive jitter is calculated from input and output RMS phase jitter by using PCIe 2.0 filter. $(T_{jadd} = \sqrt{(output jitter)^2 - (input jitter)^2})$



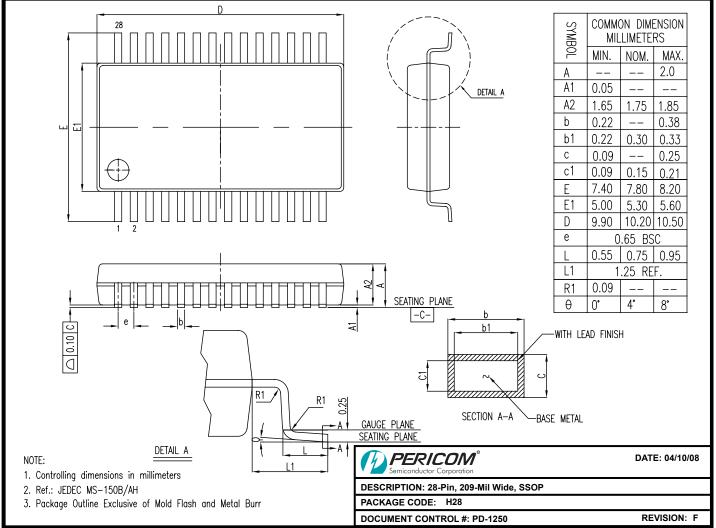
Configuration Test Load Board Termination



Part Marking

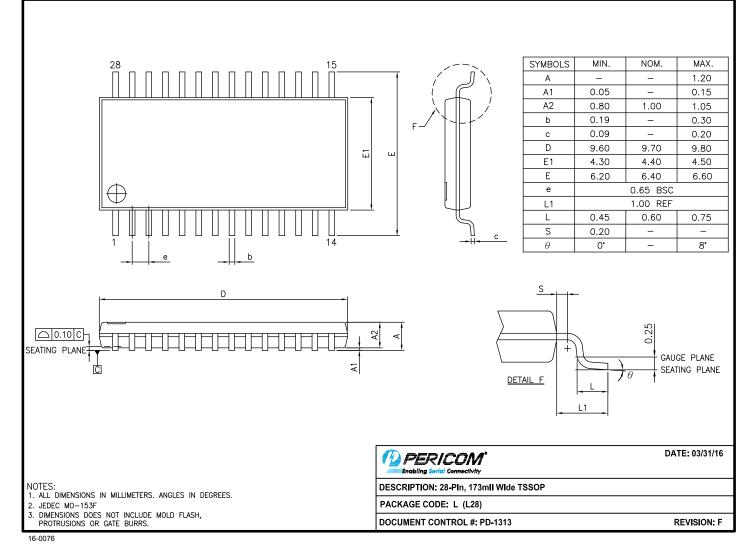
Y: Die Rev YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

H Package



Y: Die Rev YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical: 28-SSOP (H)



08-0143

Packaging Mechanical: 28-TSSOP (L)

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Package Description
PI6C20400BHEX	Н	28-pin, 209-mil wide (SSOP)
PI6C20400BLEX	L	28-pin, 173-mil wide (TSSOP)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel