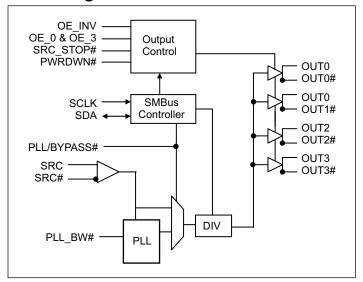


1:4 Clock Driver for Intel PCI Express Chipsets

Features

- → Four Pairs of Differential Clocks
- → Low skew < 50ps
- → Low jitter < 50ps
- → Output Enable for all outputs
- → Outputs tristate control via SMBus
- → Power Management Control
- → Programmable PLL Bandwidth
- → PLL or Fanout operation
- → 3.3V Operation
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

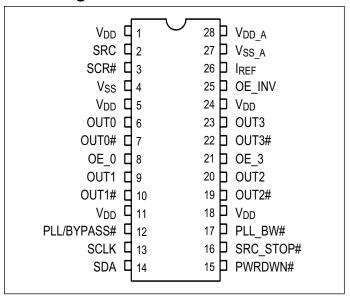

https://www.diodes.com/quality/product-definitions/

- → Packaging (Pb-free and Green):
 - 28-Pin TSSOP (L28)

Description

The PI6C20400 is a high-speed, low-noise differential clock buffer designed to be companion to PI6C410B. The device distributes the differential SRC clock from PI6C410B to four differential pairs of clock outputs either with or without PLL. The clock outputs are controlled by input selection of SRC_STOP#, PWRDWN# and SMBus, SCLK and SDA. When input of either SRC_STOP# or PWRDWN# is low, the output clocks are Tristated. When PWRDWN# is low, the SDA and SCLK inputs must be Tri-stated.

Block Diagram


Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Configuration

Pin Descriptions

Pin#	Pin Name	Туре	Description
2, 3	SRC & SRC#	Input	0.7V Differential SRC input from PI6C410 clock synthesizer
8, 21	OE_0 & OE_3	Input	3.3V LVTTL input for enabling outputs, active high. OE_0 for OUT0 / OUT0# OE_3 for OUT3 / OUT3#
25	OE_INV	Input	3.3V LVTTL input for inverting the OE, SRC_STOP# and PWRDWN# pins. When 0 = same stage When 1 = OE_0, OE_3, SRC_STOP#, PWRDWN# inverted.
6, 7, 9, 10, 19, 20, 22, 23	OUT[0:3] & OUT[0:3]#	Output	0.7V Differential outputs
12	PLL/BYPASS#	Input	3.3V LVTTL input for selecting fan-out of PLL operation.
13	SCLK	Input	SMBus compatible SCLOCK input
14	SDA	I/O	SMBus compatible SDATA
26	IREF	Input	External resistor connection to set the differential output current
16	SRC_STOP#	Input	3.3V LVTTL input for SRC stop, active low
17	PLL_BW#	Input	3.3V LVTTL input for selecting the PLL bandwidth
15	PWRDWN#	Input	3.3V LVTTL input for Power Down operation, active low
1, 5, 11, 18, 24	V_{DD}	Power	3.3V Power Supply for Outputs
4	VSS	Ground	Ground for Outputs
27	VSS_A	Ground	Ground for PLL
28	VDD_A	Power	3.3V Power Supply for PLL

Serial Data Interface (SMBus)

This part is a slave only SMBus device that supports indexed block read and indexed block write protocol using a single 7-bit address and read/write bit as shown below.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	1	1	0	0/1

Data Protocol

1 bit	7 bits	1	1	8 bits	1	8 bits	1	8 bits	1	8 bits	1	1 bit
Start bit	Slave Addr	R/W	Ack	Register offset	Ack	Byte Count = N	Ack	Data Byte 0	Ack	 Data Byte N - 1	Ack	Stop bit

Notes:

Data Byte 0: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0	Outputs Mode 0 = Divide by 2 1 = Normal	RW	1 = Normal	OUT[0:3], OUT[0:3]#	NA
1	PLL/BYPASS# 0 = Fanout 1 = PLL	RW	1 = PLL	OUT[0:3], OUT[0:3]#	NA
2	PLL Bandwidth 0 = High Bandwidth, 1 = Low Bandwidth	RW	1 = Low	OUT[0:3], OUT[0:3]#	NA
3	Reserved				NA
4	Reserved				NA
5	Reserved				NA
6	SRC_STOP# 0 = Driven when stopped 1 = Tristate	RW	0 = Driven when stopped	OUT[0:3], OUT[0:3]#	
7	PWRDWN# 0 = Driven when stopped 1 = Tristate	RW	0 = Driven when stopped	OUT[0:3], OUT[0:3]#	NA

^{1.} Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.

Data Byte 1: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0					
1	OUTPUTS enable	RW	1 = Enabled	OUT0, OUT0#	NA
2	1 = Enabled 0 = Disabled	RW	1 = Enabled	OUT1, OUT1#	NA
3					
4					
5	OUTPUTS enable	RW	1 = Enabled	OUT2, OUT2#	NA
6	1 = Enabled 0 = Disabled	RW	1 = Enabled	OUT3, OUT3#	NA
7					

Data Byte 2: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0					
1	Allow control of OUTPUTS with	RW	0 = Free running	OUT0, OUT0#	NA
2	assertion of SRC_STOP# 0 = Free running 1 = Stopped with SRC_Stop#	RW	0 = Free running	OUT1, OUT1#	NA
3					
4					
5	Allow control of OUTPUTS with	RW	0 = Free running	OUT2, OUT2#	NA
6	assertion of SRC_STOP# 0 = Free running 1 = Stopped with SRC_Stop#	RW	0 = Free running	OUT3, OUT3#	NA
7					

Data Byte 3: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0		RW			
1		RW			
2		RW			
3		RW			
4	Reserved	RW			
5		RW			
6		RW			
7		RW			

Data Byte 4: Pericom ID Register

Bit	Descriptions	Type	Power Up Condition	Output(s) Affected	Pin
0		R	0	NA	NA
1		R	0	NA	NA
2		R	0	NA	NA
3	D : ID	R	0	NA	NA
4	Pericom ID	R	0	NA	NA
5		R	1	NA	NA
6		R	0	NA	NA
7		R	0	NA	NA

Functionality

PWRDWN#	OUT	OUT#	SRC_Stop#	OUT	OUT#
1	Normal	Normal	1	Normal	Normal
0	I _{REF} × 2 or Float	Low	0	I _{REF} × 6 or Float	Low

Power Down (PWRDWN# assertion)

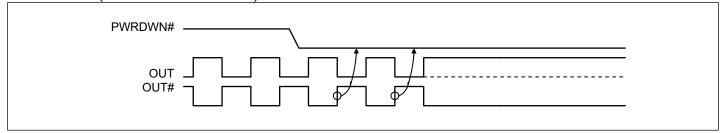


Figure 1. Power Down Sequence

Power Down (PWRDWN# De-assertion)

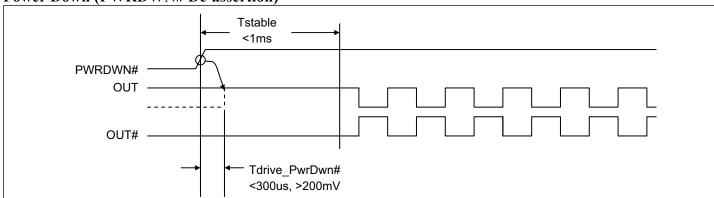


Figure 2. Power Down De-assert Sequence

Current-mode output buffer characteristics of OUT[0:3], OUT[0:3]#

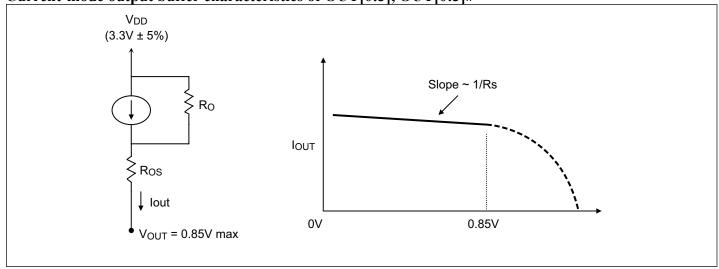


Figure 3. Simplified Diagram of Current-mode Output Buffer

Differential Clock Buffer characteristics

Symbol	Minimum	Maximum
R_{O}	3000Ω	N/A
R _{OS}	unspecified	unspecified
V _{OUT}	N/A	850mV

Current Accuracy

Symbol	Conditions	Configuration	Load	Min.	Max.
I	V 2 20 +50/	$R_{REF} = 475\Omega \ 1\%$	Nominal test load for given	-12%	+12%
IOUT	$V_{DD} = 3.30 \pm 5\%$	$I_{REF} = 2.32 \text{mA}$	configuration	I _{NOMINAL}	I _{NOMINAL}

Note:

Differential Clock Output Current

Board Target Trace/Term Z	Reference R, Iref = $V_{DD}/(3xRr)$	Output Current	V _{OH} @ Z
100Ω (100Ω differential ≈ 15% coupling ratio)	$R_{REF} = 475\Omega \ 1\%,$ $I_{REF} = 2.32 \text{mA}$	$I_{OH} = 6 \times I_{REF}$	0.7V @ 50

^{1.} I_{NOMINAL} refers to the expected current based on the configuration of the device.

Absolute Maximum Ratings (Over operating free-air temperature range)

Symbol	Parameters	Min.	Max.	Units
$V_{\mathrm{DD_A}}$	3.3V Core Supply Voltage	-0.5	4.6	
V_{DD}	3.3V I/O Supply Voltage	-0.5	4.6	\mathbf{v}
V _{IH}	Input High Voltage		4.6	V
V _{IL}	Input Low Voltage	-0.5		
Ts	Storage Temperature	-65	150	°C
V _{ESD}	ESD Protection	2000		V
TJ	Junction Temperature		125	°C

Note:

DC Electrical Characteristics (V_{DD} = 3.3±5%, V_{DD A} = 3.3±5%)

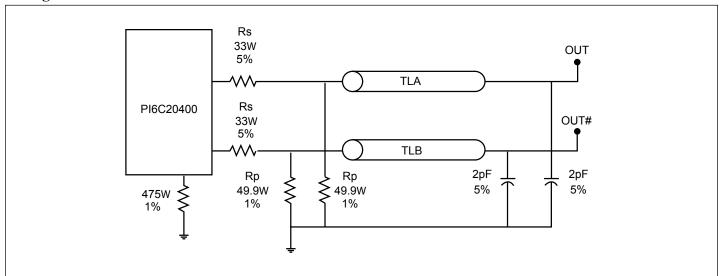
Symbol	Parameters	Condition	Min.	Max.	Units	
V_{DD_A}	3.3V Core Supply Voltage		3.135	3.465	V	
V_{DD}	3.3V I/O Supply Voltage		3.135	3.465		
V_{IH}	3.3V Input High Voltage	$V_{ m DD}$	2.0	$V_{DD} + 0.3$		
V_{IL}	3.3V Input Low Voltage		$V_{SS} - 0.3$	0.8		
I _{IK}	Input Leakage Current	$0 < V_{IN} < V_{DD}$	-5	+5	μΑ	
V _{OH}	3.3V Output High Voltage	$I_{OH} = -1 \text{mA}$	2.4		7.7	
V _{OL}	3.3V Output Low Voltage	$I_{OL} = 1 \text{mA}$		0.4	V	
I _{OH}	Output High Current	$I_{OH} = 6 \times I_{REF}$	12.2		mA	
		$I_{REF} = 2.32 \text{mA}$		15.6		
C _{IN}	Input Pin Capacitance		3	5	E	
C _{OUT}	Output Pin Capacitance			6	pF	
L _{PIN}	Pin Inductance			7	nН	
I _{DD}	Power Supply Current	$V_{DD} = 3.465V, F_{CPU} = 200MHz$		200		
I _{SS}	Power Down Current	Driven outputs		40	mA	
I _{SS}	Power Down Current	Tristate outputs		12		
T _A	Ambient Temperature		0	70	°C	

^{1.} Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

AC Switching Characteristics (V_{DD} = 3.3±5%, V_{DD_A} = 3.3±5%)

Symbol	Parameters	Min.	Max.	Units	Notes
T _{rise} / T _{fall}	Rise and Fall Time (measured between 0.175V to 0.525V)	175	700	ps	2
ΔT_{rise} / ΔT_{fall}	Rise and Fall Time Variation		125	ps	2
	Rise/Fall Matching		20	%	2
Т	PLL Mode		±250	ps	
T_{pd}	Non-PLL Mode	2.5	6.5	ns	
T _{skew}	Output-to-Output Skew		50	ps	3
T _{jitter}	Cycle – Cycle Jitter		50	ps	3, 4
V _{HIGH}	Voltage High including overshoot	660	1150	mV	2
$V_{ m LOW}$	Voltage Low including undershoot	-300		mV	2
V _{cross}	Absolute crossing point voltages	250	550	mV	2
ΔV_{cross}	Total Variation of Vcross over all edges		140	mV	2
T _{DC}	Duty Cycle	45	55	%	3

Notes:

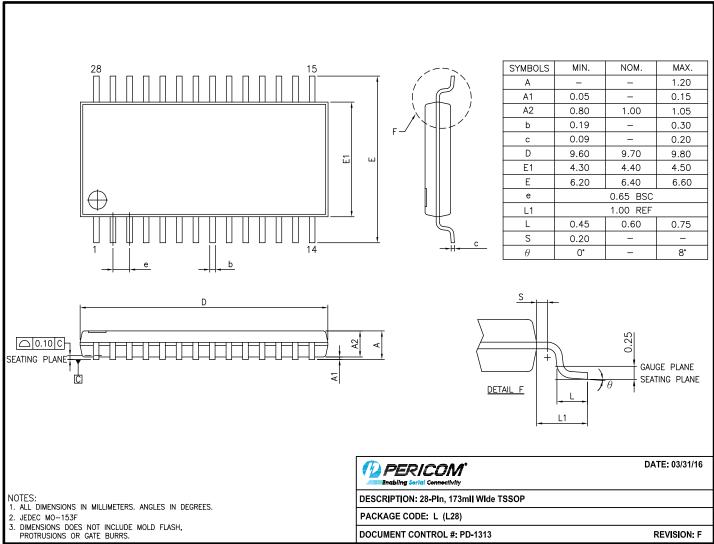

- 1. Test configuration is $R_s = 33.2\Omega$, $Rp = 49.9\Omega$, and 2pF.
- 2. Measurement taken from Single Ended waveform.
- 3. Measurement taken from Differential waveform.
- 4. Measurement taken using M1 data capture analysis tool.

www.diodes.com

Configuration Test Load Board Termination

Part Marking

Y: Die Rev YY: Year


WW: Workweek

1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical: 28-TSSOP (L)

16-0076

For latest package info.

 $please\ check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packagin$

Ordering Information

Ordering Code	Package Code	Package Description
PI6C20400LEX	L	28-pin, 173-mil wide (TSSOP)

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. E = Pb-free and Green
- 5. X suffix = Tape/Reel