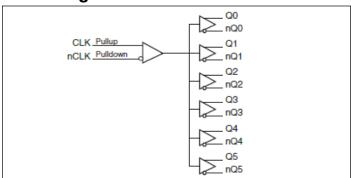


High Performance LVDS Fanout Buffer

Features

- → 6 LVDS outputs
- → Up to 1.5GHz output frequency
- → Ultra low additive phase jitter: < 0.03 ps (typ) (differential 156.25MHz, 12KHz to 20MHz integration range)
- → Single differential input
- → Low delay from input to output (Tpd typ. < 1.5ns)
- → Separate Input output supply voltage for level shifting
- \rightarrow 2.5V / 3.3V power supply
- → Industrial temperature support
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.
 - https://www.diodes.com/quality/product-definitions/
- → Packaging (Pb-free & Green):
 - 24-Pin, (TSSOP)

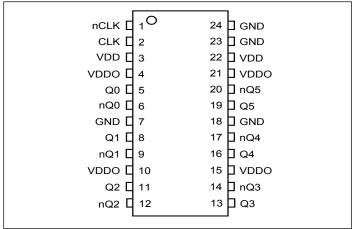

Description

The PI6C4921506 is a high performance fanout buffer device which supports up to 1.5GHz frequency. The device also uses Diodes' proprietary input detection technique to make sure illegal input conditions will be detected and reflected by output states. This device is ideal for systems that need to distribute low jitter clock signals to multiple destinations.

Applications

- → Networking systems including switches and Routers
- → High frequency backplane based computing and telecom platforms

Block Diagram


Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Configuration

Pin Description

Pin #	Pin Name	Type	Description			
1.2	nCLK	Toward	Differential deale in mot			
1, 2	CLK	Input	Differential clock input			
3, 22	$V_{ m DD}$	Power	Power supply			
4, 10, 15, 21	V_{DDO}	Power	IO power supply			
5.6	Q0	Outmut	IVDC output als als			
5, 6	nQ0	Output	LVDS output clock			
7, 18, 23, 24	GND	Power	Ground			
	Q1	0 4 4	IVDC 4 4 1 1			
8, 9	nQ1	Output	LVDS output clock			
11 12	Q2		IVDCttll-			
11, 12	nQ2	Output	LVDS output clock			
12 14	Q3	Outmut	IVDC output als als			
13, 14	nQ3	Output	LVDS output clock			
16 17	Q4	Outmut	IVDC output als als			
16, 17	nQ4	Output	LVDS output clock			
10.20	Q5	Outmut	IVDC output als als			
19, 20	nQ5	Output	LVDS output clock			

2

Clock Input Function Table

Inp	uts	Outputs		Input to Output Mode	Dolowitz
CLK	nCLK	Q0:Q5	nQ0:nQ5	Input to Output Mode	Polarity
0	1	LOW	HIGH	Differential to Differential	Non Inverting
1	0	HIGH	LOW	Differential to Differential	Non Inverting
0	Biased	LOW	HIGH	Single Ended to Differential	Non Inverting
1	Biased	HIGH	LOW	Single Ended to Differential	Non Inverting
Biased	0	HIGH	LOW	Single Ended to Differential	Inverting
Biased	1	LOW	HIGH	Single Ended to Differential	Inverting

May 2021

Maximum Ratings (Above which the useful life may be impaired. For user guidelines, not tested)

Supply Voltage, V _{DD}	4.65V
Inputs, V ₁	$0.5V$ to $V_{DD} + 0.5V$
Outputs, I_{O} (LVDS)	
Continuous Current	10mA
Surge Current	15mA
Package Thermal Impedance, Θ_{JA}	70°C/W (0 mps)
Storage temperature, T_{STG} (Junction-to-Ambi	ient)65 to +150°C

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Power Supply DC Characteristics ($V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = -40^{\circ}\text{C}$ to 85°C)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V_{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
$V_{ m DDO}$	Output Supply Voltage		3.135	3.3	3.465	V
I_{DD}	Power Supply Current				70	mA
$I_{ m DDO}$	Output Supply Current				100	mA

Power Supply DC Characteristics ($V_{DD}=V_{DDO}=2.5V\pm5\%$, $T_A=-40^{\circ}C$ to $85^{\circ}C$)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V_{DD}	Positive Supply Voltage		2.375	2.5	2.625	V
$V_{ m DDO}$	Output Supply Voltage		2.375	2.5	2.625	V
$I_{ m DD}$	Power Supply Current				65	mA
$I_{ m DDO}$	Output Supply Current				102	mA

Differential DC Characteristics ($V_{DD} = V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40$ °C to 85°C)

Symbol	Parameter		Test Condition	Min.	Тур.	Max.	Units
т	I _{IH} Input High Current	CLK	$V_{\rm IN} = V_{\rm DD}$			10	μΑ
I _{IH}		nCLK	$V_{IN} = V_{DD}$			150	μΑ
т	Input Low Current	CLK	$V_{IN} = 0V$	-150			μΑ
I _{IL}		nCLK	$V_{IN} = 0V$	-10			μΑ
V_{PP}	Peak-to-Peak Input Voltage(1)			0.15		1.3	V
V_{CMR}	Common Mode Input	Voltage(1, 2)		GND+0.5		V _{DD} -0.85	V

Note:

- 1. VIL should not be less than -0.3V
- 2. Common mode voltage is defined as VH

LVDS DC Characteristics ($V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = -40^{\circ} C$ to $85^{\circ} C$)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V_{OD}	Differential Output Voltage		326		526	mV
$\Delta V_{ m OD}$	V _{OD} Magnitude Change				50	mV
Vos	Offset Voltage		1.2		1.3	V
$\Delta V_{ m OS}$	V _{OS} Magnitude Change				50	mV

Note:

Please refer to Parameter Measurement Information for output information.

LVDS DC Characteristics ($V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = -40$ °C to 85°C)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V _{OD}	Differential Output Voltage		305		505	mV
$\Delta V_{ m OD}$	V _{OD} Magnitude Change				50	mV
Vos	Offset Voltage		1.15		1.3	V
ΔV_{OS}	V _{OS} Magnitude Change				50	mV

Note:

Please refer to Parameter Measurement Information for output information.

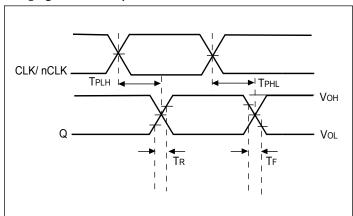
AC Characteristics ($V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = -40$ °C to 85°C)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
f_{MAX}	Output Frequency				1.5	GHz
t_{PD}	Propagation Delay ⁽¹⁾		800		1100	ps
t _{sk(o)}	Output Skew ^(2, 3)				55	ps
t_{jit}	Buffer Additive Phase Jitter, RMS	622.08MHz, Integration Range: 12kHz – 20MHz		0.067		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	50		250	ps
odc	Output Duty Cycle	≤ 622MHz	47		53	%

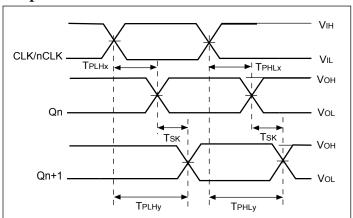
Note:

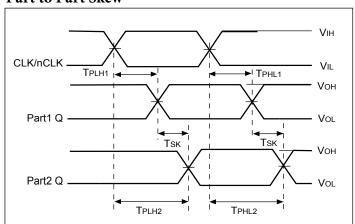
Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

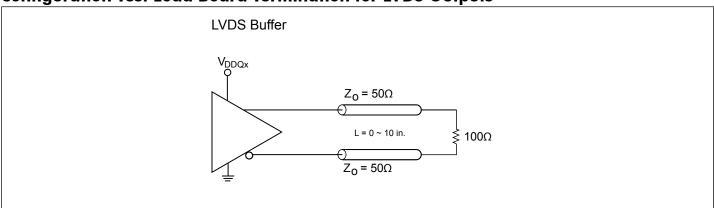
- $1. \quad \text{Measured from the differential input crossing point to the differential output crossing point.} \\$
- 2. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured from at the output differential cross points.
- 3. This parameter is defined in accordance with JEDEC Standard 65.


AC Characteristics ($V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = -40$ °C to 85°C)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
f_{MAX}	Output Frequency				1.5	GHz
t_{PD}	Propagation Delay ⁽¹⁾		800		1200	ps
t _{sk(o)}	Output Skew ^(2, 3)				55	ps
t _{jit}	Buffer Additive Phase Jitter, RMS	622.08MHz,Integration Range: 12kHz – 20MHz		0.067		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	50		250	ps
odc	Output Duty Cycle	≤ 622MHz	47		53	%




Propagation Delay T_{PD}

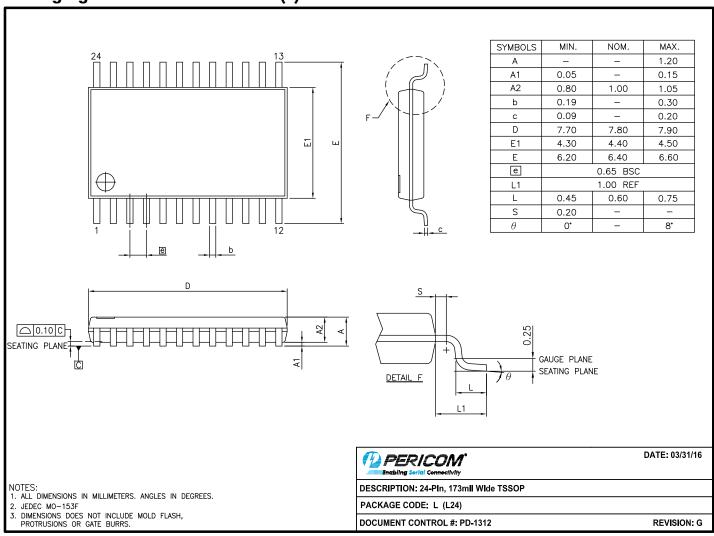

Output Skew

Part to Part Skew

Configuration Test Load Board Termination for LVDS Outputs

Part Marking

YY: Year


WW: Workweek

1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical: 24-TSSOP (L)

16-0075

For latest package info.

 $please\ check:\ http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-pericom-packa$

Ordering Information

Ordering Number	Package Code	Package Description
PI6C4921506LIEX	L	24-Pin, 173mil Wide (TSSOP)

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- $2. \ See \ https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.$
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. I = Industrial
- 5. E = Pb-free and Green
- 6. X suffix = Tape/Reel