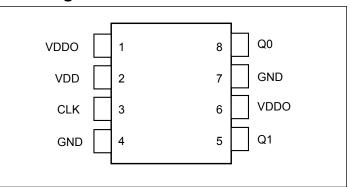


Automotive AEC-Q100 Qualified Low Skew, 1-To-2 LVCMOS / LVTTL Fanout Buffer

Features

- → 2 LVCMOS / LVTTL outputs
- → LVCMOS / LVTTL clock input accepts LVCMOS or LVTTL input levels
- → Maximum output frequency: 250MHz
- → Output skew: 25ps (typical)
- → Part-to-part skew: 250ps (typical)
- → Small 8 lead SOIC package saves board space
- → Full 3.3V, 2.5V operation modes
- → AEC-Q100 Qualified
- → Automotive Grade 2 temperature range (-40 to 105 °C)
- → Automotive Grade 3 temperature range (-40 to 85 °C)
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free "Green" Device (Note 3)
- → The PI6C49CB02Q is suitable for automotive applications requiring specific change control and is AEC-Q100 qualified, has a grade 2, -40 to 105 °C temperature rating and grade 3, -40 to 85 °C temperature rating, is PPAP capable, and is manufactured in IATF16949:2016 certified facilities.
- → Package: 8-Pin, SOIC (W)


Block Diagram

Description

The PI6C49CB02Q is an automotive qualified low skew, 1-to-2 LVCMOS/LVTTL High Performance Fanout Buffer. The PI6C49CB02Q has a single ended clock input. The single ended clock input accepts LVCMOS or LVTTL input levels. The PI6C49CB02Q features a pair of LVCMOS/LVTTL outputs. Guaranteed output and part-to-part skew characteristics make the PI6C49CB02Q ideal for clock distribution applications demanding well defined performance and repeatability.

Pin Assignment

Notes:

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

^{1.} No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

Pin Descriptions

Pin#	Pin Name	Pin T	Гуре	Pin Description
1, 6	VDDO	Power		Output supply pins.
2	VDD	Power		Core supply pin.
3	CLK	Input	Pull-down	LVCMOS / LVTTL clock input.
4,7	GND	Power		Power supply ground.
5	Q1	Output		Single clock output. LVCMOS / LVTTL interface levels.
8	Q0	Output		Single clock output. LVCMOS / LVTTL interface levels.

Note: Pulldown refer to internal input resistors, typical values in Pin Characteristics table.

Pin Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
C _N	Capacitance			4		pF
R _{PULLDOWN}	Input Pull-down Resistor			51		kΩ
R _{OUT}	Output Impedance		5	7	12	Ω

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Maximum Supply Voltage, VDD, VDDO 4.6V
Inputs, V_1 0.5V to VDD+0.5V
Output, V_0
Storage Temperature65°C to 150°C
ESD Protection (HBM)
Junction Temperature

Note:

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics

is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature (Automotive Grade 2)	-40		+105	°C
Ambient Operating Temperature (Automotive Grade 3)			+85	°C
Power Supply Voltage (measured in respect to GND)	+2.375		+3.465	V

Power Supply DC Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VDD		3.3V Operation	3.135	3.3	3.465	3.7
VDD	Core Supply Voltage	2.5V Operation	2.375	2.5	2.625	V
VDDO		3.3V Supply	3.135	3.3	3.465	
VDDO	Output Power Supply Voltage	2.5V Supply	2.375	2.5	2.625	V
IDD	Power Supply Current	$T_A = -40^{\circ}C$ to $85^{\circ}C$			5	mA
IDDO	Output Supply Current	Unloaded, 25 MHz, $T_A = -40^{\circ}$ C to 85°C			6.5	mA
IDD	Power Supply Current	$T_A = -40^{\circ}C$ to $105^{\circ}C$			5	mA
IDDO	Output Supply Current	Unloaded, 25 MHz, $T_A = -40^{\circ}$ C to 105°C			6.5	mA

Note: Parameters measured up to fmax unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
X 7	T	VDD = 3.3V	2		VDD+0.3	3.7
V _{IH}	Input High Voltage	VDD = 2.5V	1.7		VDD+0.3	V
X 7	L Input Low Voltage	VDD = 3.3V	-0.3		0.8	37
V_{IL}		VDD = 2.5V	-0.3		0.8	V
т		$VDD = V_{IN} = 3.465V$			100	
I _{IH}	Input High Current	$VDD = V_{IN} = 2.625V$			80	μA
т	Innut I our Cumont	$VDD = 3.465 V, V_{IN} = 0 V$	-5			۸
1 _{IL}	Input Low Current	$VDD = 2.625V, V_{IN} = 0V$	-5			μΑ
17	Output High Voltage	$VDDO = 3.3V I_{OH} = -100 \mu A$	2.9			V
V _{oh}	Output High Voltage	$VDDO = 2.5V I_{OH} = -100 \mu A$	2.2			V
V _{OL} C	Output Lour Voltage	$VDDO = 3.3V I_{OL} = 100\mu A$			0.2	V
	Output Low Voltage	$VDDO = 2.5V I_{OL} = 100 \mu A$			0.2	V

LVCMOS / LVTTL DC Characteristics. $T_{A} = -40^{\circ}C$ to $85^{\circ}C$

LVCMOS / LVTTL DC Characteristics, $T_A=\,-40^\circ C$ to $105^\circ C$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
3.7	T	VDD = 3.3V	2		VDD+0.3	3.7
V_{IH}	Input High Voltage	VDD = 2.5V	1.7		VDD+0.3	V
X 7	Input Low Voltage	VDD = 3.3V	-0.3		0.8	3.7
V _{IL}		VDD = 2.5V	-0.3		0.8	V
т	Input High Current	$VDD = V_{IN} = 3.465V$			100	
1 _{IH}		$VDD = V_{IN} = 2.625V$			80	μΑ
т	Invest I and Comment	$VDD = 3.465V, V_{IN} = 0V$	-5			
I _{IL}	Input Low Current	$VDD = 2.625V, V_{IN} = 0V$	-5			μΑ
N 7	Output IIish Valtara	$VDDO = 3.3V I_{OH} = -100 \mu A$	2.9			V
V _{OH}	Output High Voltage	$VDDO = 2.5V I_{OH} = -100\mu A$	2.2			V
V	Output Law Valtage	$VDDO = 3.3V I_{OL} = 100 \mu A$			0.2	V
V _{OL}	Output Low Voltage	$VDDO = 2.5V I_{OL} = 100 \mu A$			0.2	V

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
C.		VDDO = 3.3V	4		250	MHz
f _{max}	Output Frequency	VDDO = 2.5V	4		250	
	Propagation Delay, Low-to-	VDDO = 3.3V, <i>f</i> ≤ 250MHz	1.4		2.2	
tp _{LH}	High	VDDO = 2.5V, <i>f</i> ≤ 250MHz	1.5		3.0	ns
tsk(0)	Output Skew ⁽²⁾			25	80	ps
tsk(pp)	Part-to-Part Skew ⁽³⁾			250	800	ps
		VDDO = 3.3V	100	300	400	
t _R	Output Rise Time ⁽⁴⁾	VDDO = 2.5V	100	350	500	ps
1	October Dell Time (4)	VDDO = 3.3V	100	300	400	
t _F	Output Fall Time ⁽⁴⁾	VDDO = 2.5V	100	350	500	ps
		<i>f</i> ≤133MHz	48		52	%
odc	Output Duty Cycle ⁽⁵⁾	133MHz < <i>f</i> ≤ 200MHz	47		53	%
		$200 \text{MHz} < f \le 250 \text{MHz}$	47		53	%
t		156.25MHz (@12kHz to 20MHz)		0.1		ps
τ _{jit}	Additive RMS Jitter	125MHz (@12kHz to 20MHz)		0.07		ps

AC Characteristics, $VDD = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Note:

Parameters measured at $f_{\rm MAX}$ unless otherwise noted.

1. Measured from VDD /2 of the input to VDDO /2 of the output.

2. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO /2.

3. Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at VDDO /2.

4. Defined from 20% to 80%

5. Measured at VDDO /2

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
C		VDDO = 3.3V	4		250	MHz
f _{max}	Output Frequency	VDDO = 2.5V	4		250	
		VDDO = 3.3V, <i>f</i> ≤ 250MHz	1.4		2.2	
tp _{LH}	Propagation Delay, Low-to-High ⁽¹⁾	VDDO = 2.5V, <i>f</i> ≤ 250MHz	1.5		3.0	ns
tsk(0)	Output Skew ⁽²⁾			25	80	ps
<i>tsk</i> (pp)	Part-to-Part Skew ⁽³⁾			250	800	ps
		VDDO = 3.3V	100	300	400	
t _R	Output Rise Time ⁽⁴⁾	VDDO = 2.5V	100	350	500	ps
		VDDO = 3.3V	100	300	400	
t _F	Output Fall Time ⁽⁴⁾	VDDO = 2.5V	100	350	500	ps
		<i>f</i> ≤133MHz	48		52	%
odc	Output Duty Cycle ⁽⁵⁾	133MHz < <i>f</i> ≤ 200MHz	47		53	%
		200MHz < <i>f</i> ≤ 250MHz	47		53	%
t _{jit}	Additive RMS Jitter	156.25MHz (@12kHz to 20MHz)		0.1		ps
		125MHz (@12kHz to 20MHz)		0.07		ps

AC Characteristics, VDD = $3.3V \pm 5\%$, T_A = -40° C to 105° C

Note:

Parameters measured at $\mathbf{f}_{_{\rm MAX}}$ unless otherwise noted.

1. Measured from VDD /2 of the input to VDDO /2 of the output.

2. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO /2.

3. Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at VDDO /2.

4. Defined from 20% to 80%

5. Measured at VDDO /2

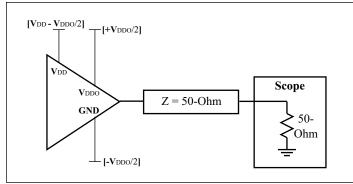
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{max}	Output Frequency	VDDO = 2.5V	4		250	MHz
tp _{LH}	Propagation Delay, Low-to-High ⁽¹⁾	VDDO = 2.5V, <i>f</i> ≤ 250MHz	1.5		2.8	ns
tsk(0)	Output Skew ⁽²⁾			25	75	ps
tsk(pp)	Part-to-Part Skew ⁽³⁾			250	800	ps
t _R	Output Rise Time ⁽⁴⁾	VDDO = 2.5V	100	350	500	ps
t _F	Output Fall Time ⁽⁴⁾	VDDO = 2.5V	100	350	500	ps
		<i>f</i> ≤133MHz	48		52	%
odc	Output Duty Cycle ⁽⁵⁾	133 MHz < $f \le 200$ MHz	47		53	%
		$200MHz < f \le 250MHz$	42		58	%
t	Addition DMC little	156.25MHz (@12kHz to 20MHz)		0.1		ps
L jit	Additive RMS Jitter	125MHz (@12kHz to 20MHz)		0.07		ps

AC Characteristics, VDD = $2.5V \pm 5\%$, T_A = -40° C to 85° C

Note:

Parameters measured at $\mathbf{f}_{_{\rm MAX}}$ unless otherwise noted.

1. Measured from VDD /2 of the input to VDDO /2 of the output.


2. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO /2.

3. Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at VDDO /2.

4. Defined from 20% to 80%

5. Measured at VDDO /2

AC Test Circuit Load

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{max}	Output Frequency	VDDO = 2.5V	4		250	MHz
tp _{LH}	Propagation Delay, Low-to-High ⁽¹⁾	VDDO = 2.5V, <i>f</i> ≤ 250MHz	1.5		2.8	ns
tsk(0)	Output Skew ⁽²⁾			25	75	ps
tsk(pp)	Part-to-Part Skew ⁽³⁾			250	800	ps
t _R	Output Rise Time ⁽⁴⁾	VDDO = 2.5V	100	350	500	ps
t _F	Output Fall Time ⁽⁴⁾	VDDO = 2.5V	100	350	500	ps
		<i>f</i> ≤133MHz	48		52	%
odc	Output Duty Cycle ⁽⁵⁾	133MHz < <i>f</i> ≤ 200MHz	47		53	%
		$200 \text{MHz} < f \le 250 \text{MHz}$	42		58	%
t	Addition DMC little	156.25MHz (@12kHz to 20MHz)		0.1		ps
L _{jit}	Additive RMS Jitter	125MHz (@12kHz to 20MHz)		0.07		ps

AC Characteristics, VDD = $2.5V \pm 5\%$, T_A = -40° C to 105° C

Note:

Parameters measured at f_{MAX} unless otherwise noted.

1. Measured from VDD /2 of the input to VDDO /2 of the output.

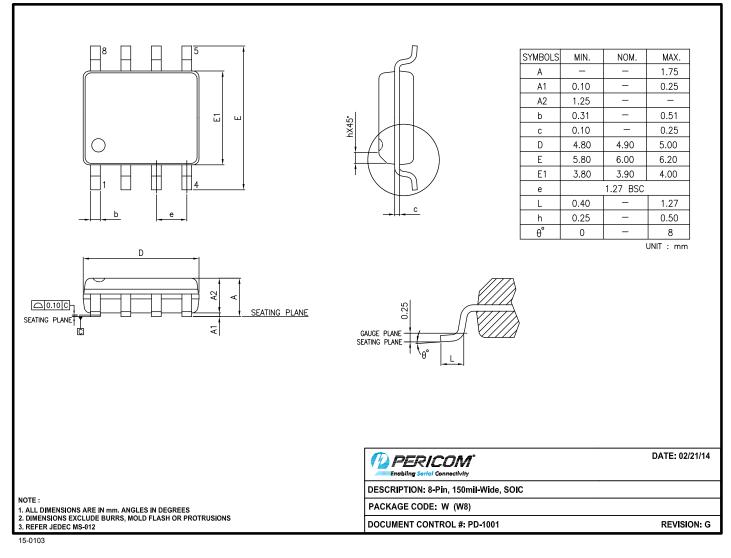
2. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO /2.

3. Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at VDDO /2.

4. Defined from 20% to 80%

5. Measured at VDDO /2

Part Marking



*: Die Rev (2 or 3) YY: Year WW: Workweek 1st X: Assembly Site Code 2nd X: Wafer Site Code

Packaging Mechanical: 8-SOIC (W)

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	ode Package Code Operating Temperature		Package Description
PI6C49CB02Q2WEX	W	-40 to 105°C	8-pin, 150mil-Wide (SOIC)
PI6C49CB02Q3WEX	W	-40 to 85°C	8-pin, 150mil-Wide (SOIC)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. Q = Automotive Compliant

5. 2 and 3 = AEC-Q100 Grade Level

6. E = Pb-free and Green

7. X suffix = Tape/Reel