

PI6C59S6005

6 GHz Selectable Fanout Buffer with Internal Termination

Features

- \rightarrow Input Clock Frequency up to 6 GHz Typical
- \rightarrow 5 pairs of differential LVPECL/ CML outputs
- \rightarrow Low additive jitter, < 0.05ps (max)
- \rightarrow Input CLK accepts: LVPECL, LVDS, CML, SSTL input level
- \rightarrow Output to Output skew: <20ps
- \rightarrow Operating Temperature: -40^oC to 85^oC
- \rightarrow Power supply: 3.3V $\pm 10\%$ or 2.5V $\pm 5\%$
- → Packaging (Pb-free & Green)
- \rightarrow 24-pin TQFN available

Description

The PI6C59S6005 is a high-performance low-skew 1-to-5 LVPECL fanout buffer. The CLK inputs accept LVPECL, LVDS, CML and SSTL signals. PI6C59S6005 is ideal for clock distribution applications such as providing fanout for low noise Pericom oscillators.

Block Diagram

Pin Configuration

PI6C59S6005

Pin Description(1)

Functional Description

Select Pin Descriptions

PI6C59S6005

Maximum Ratings (Over operating free-air temperature range)

DC Characteristics

LVCMOS/LVTTL DC Characteristics $(TA = -40^{\circ}C \text{ to } +85^{\circ}C, V_{DD} = 2.5V \pm 5\% \text{ to } 3.3V \pm 10\%)$

PI6C59S6005

LVPECL DC Characteristics (T_A = -40°C to +85°C, V_{DD} = 3.3V ±10%, 2.5V ±5%)

CML DC Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 3.3V \pm 10\%$, 2.5V $\pm 5\%$)

AC Characteristics $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{DD} = 3.3V \pm 10\%, 2.5V \pm 5\%)$

Notes:

1. Measured from the differential input to the differential output crossing point

2. Defined as skew between outputs at the same supply voltage and with equal loads. Measured at the output differential crossing point

PI6C59S6005

Output Swing vs Frequency

PI6C59S6005

Average Propagation Delay vs Temperature

Phase Noise Plots

PI6C59S6005

Configuration Test Load Board Termination for LVPECL Outputs

Configuration Test Load Board Termination for CML Outputs

Thermal Information

PI6C59S6005

Application Information Suggest for Unused Inputs and Outputs

LVCMOS Input Control Pins

It is suggested to add pull-up=4.7k and pull-down=1k for LVCMOS pins even though they have internal pull-up/down but with much higher value (>=50k) for higher design reliability.

REF_IN=/ REF_IN- Input Pins

They can be left floating if unused. For added reliability, connect $1k\Omega$ to GND.

Outputs

All unused outputs are suggested to be left open and not connected to any trace. This can lower the IC power supply power.

Power Decoupling & Routing

VDD Pin Decoupling

As general design rule, each VDD pin must have a 0.1uF decoupling capacitor. For better decoupling, 1uF can be used. Locating the decoupling capacitor on the component side has better decoupling filter result as shown in Fig. 1.

Differential Clock Trace Routing

Always route differential signals symmetrically, make sure there is enough keep-out space to the adjacent trace (>20mil.). In 156.25MHz XO drives IC example, it is better routing differential trace on component side as the following Fig. 2.

Fig 2: IC routing for XO drive

Clock timing is the most important component in PCB design, so its trace routing must be planned and routed as a first priority in manual routing. Some good practices are to use minimum vias (total trace vias count <4), use independent layers with good reference plane and keep other signal traces away from clock traces (>20mil.) etc.

PI6C59S6005

LVPECL and LVDS Input Interface

LVPECL and LVDS DC Input

LVPECL and LVDS clock input to this IC is connected as shown in the Fig. 3.

Fig 3: LVPECL/ LVDS Input

LVPECL and LVDS AC Input

LVPECL and LVDS AC drive to this clock IC requires the use of the VREF-AC output to recover the DC bias for the IC input as shown in Fig. 4

Fig 4: LVPECL/ LVDS AC Coupled Input

CML AC-Coupled Input

CML AC-coupled drive requires a connection to VREF-AC as shown in Fig. 5. The CML DC drive is not recommended as different vendors have different CML DC voltage level. CML is mostly used in AC coupled drive configuration for data and clock signals.

Fig 5: CML AC-Coupled Input Interface

PI6C59S6005

HCSL AC-Coupled Input

It is suggested to use AC coupling to buffer PCIe HCSL 100MHz clock since its V_cm is relatively low at about 0.4V, as shown in Fig. 6.

Fig 6: HCSL AC-Coupled Input Interface

CMOS Clock DC Drive Input

LVCMOS clock has voltage Voh levels such as 3.3V, 2.5V, 1.8V. CMOS drive requires a Vcm design at the input: Vcm= ½ (CMOS V) as shown in Fig. 7. Rs =22 ~33ohm typically.

Fig 7: CMOS DC Input Vcm Design

PI6C59S6005

Device LVPECL Output Terminations

LVPECL Output Popular Termination

The most popular LVPECL termination is 150ohm pull-down bias and 100ohm across at RX side. Please consult ASIC datasheet if it already has 100ohm or equivalent internal termination. If so, do not connect external 100ohm across as shown in Fig. 8. This popular termination's advantage is that it does not allow any bias through from V_{DD} . This prevents V_{DD} system noise coupling onto clock trace.

Fig. 8 LVPECL Output Popular Termination

LVPECL Output Thevenin Termination

Fig. 9 shows LVPECL output Thevenin termination which is used for shorter trace drive (<5in.), but it takes V_{DD} bias current and V_{DD} noise can get onto clock trace. It also requires more component count. So it is seldom used today.

Fig. 9 LVPECL Thevenin Output Termination

LVPECL Output AC Thevenin Termination

LVPECL AC Thevenin terminations require a 150ohm pull-down before the AC coupling capacitor at the source as shown in Fig. 10. Note that pull-up/down resistor value is swapped compared to Fig. 9. This circuit is good for short trace (<5in.) application only.

Fig. 10 LVPECL Output AC Thenvenin Termination

PI6C59S6005

LVPECL Output Drive HCSL Input

Using the LVPECL output to drive a HCSL input can be done using a typical LVPECL AC Thenvenin termination scheme. Use pullup/down 450/60ohm to generate Vcm=0.4V for the HCSL input clock. This termination is equivalent to 50Ohm load as shown in Fig. 11.

Fig. 11 LVPECL Output Drive HCSL Termination

LVPECL Output V_swing Adjustment

It is suggested to add another cross 100ohm at TX side to tune the LVPECL output V_swing without changing the optimal 150ohm pull-down bias in Fig. 12. This form of double termination can reduce the V_swing in ½ of the original at the RX side. By fine tuning the 100ohm resistor at the TX side with larger values like 150 to 200ohm, one can increase the V_swing by $> 1/2$ ratio.

Fig. 12 LVPECL Output V_swing Adjustment

CML AC Output Drive

CML is implemented mostly via AC coupling. With AC coupling, CML can drive LVPECL and LVDS inputs as well with an external 100 ohm equivalent differential termination.

PI6C59S6005

Clock Jitter Definitions

Total jitter= RJ + DJ

Random Jitter (RJ) is unpredictable and unbounded timing noise that can fit in a Gaussian math distribution in RMS. RJ test values are directly related with how long or how many test samples are available. Deterministic Jitter (DJ) is timing jitter that is predictable and periodic in fixed interference frequency. Total Jitter (TJ) is the combination of random jitter and deterministic jitter: , where is a factor based on total test sample count. JEDEC std. specifies digital clock TJ in 10k random samples.

Phase Jitter

Phase noise is short-term random noise attached on the clock carrier and it is a function of the clock offset from the carrier, for example dBc/Hz@10kHz which is phase noise power in 1-Hz normalized bandwidth vs. the carrier power @10kHz offset. Integration of phase noise in plot over a given frequency band yields RMS phase jitter, for example, to specify phase jitter <=1ps at 12k to 20MHz offset band as SONET standard specification.

PCIe Ref_CLK Jitter

PCIe reference clock jitter specification requires testing via the PCI-SIG jitter tool, which is regulated by US PCI-SIG organization. The jitter tool has PCIe Serdes embedded filter to calculate the equivalent jitter that relates to data link eye closure. Direct peak-peak jitter or phase jitter test data, normally is higher than jitter measure using PCI-SIG jitter tool. It has high-frequency jitter and low-frequency jitter spec. limit. For more information, please refer to the PCI-SIG website: <http://www.pcisig.com/specifications/pciexpress/>

Device Thermal Calculation

Fig. 13 shows the JEDEC thermal model in a 4-layer PCB.

Fig. 13 JEDEC IC Thermal Model

Important factors to influence device operating temperature are:

1) The power dissipation from the chip (P_chip) is after subtracting power dissipation from external loads. Generally it can be the no-load device Idd

2) Package type and PCB stack-up structure, for example, 1oz 4 layer board. PCB with more layers and are thicker has better heat dissipation

3) Chassis air flow and cooling mechanism. More air flow M/s and adding heat sink on device can reduce device final die junction temperature Tj

PI6C59S6005

The individual device thermal calculation formula:

Tj =Ta + Pchip x Ja

Tc = Tj - Pchip x Jc

Ja ___ Package thermal resistance from die to the ambient air in C/W unit; This data is provided in JEDEC model simulation. An air flow of 1m/s will reduce Ja (still air) by 20~30%

Jc ___ Package thermal resistance from die to the package case in C/W unit

Tj ___ Die junction temperature in C (industry limit <125C max.)

Ta ___ Ambiant air température in C

Tc ___ Package case temperature in C

Pchip___ IC actually consumes power through Iee/GND current

Thermal calculation example

To calculate Tj and Tc of PI6CV304 in an SOIC-8 package: Step 1: Go to Pericom web to find Ja=157 C/W, Jc=42 C/W <http://www.pericom.com/support/packaging/packaging-mechanicals-and-thermal-characteristics/>

Step 2: Go to device datasheet to find Idd=40mA max.

Step 3: P_total= 3.3Vx40mA=0.132W Step 4: If Ta=85C

Ti= $85 +$ Ja xP_total= $85+25.9 = 105.7C$

Tc= Tj + Jc xP_total= $105.7 - 5.54 = 100.1C$

Note:

The above calculation is directly using Idd current without subtracting the load power, so it is a conservative estimation. For more precise thermal calculation, use P_unload or P_chip from device Iee or GND current to calculate Tj, especially for LVPECL buffer ICs that have a 150ohm pull-down and equivalent 100ohm differential RX load.

Part Marking

ZD Package

YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

PI6C59S6005

Packaging Mechanical: 24-TQFN (ZD)

17-0533

For latest package info.

please check:<http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/>

Ordering Information(1,2,3)

Notes:

1. EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.

2. See [http://www.diodes.com/quality/lead-free/ for](http://www.diodes.com/quality/lead-free/) more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. Thermal characteristics can be found on the company web site at www.diodes.com/design/support/packaging/

3. $E = Pb$ -free and Green

4. X suffix = Tape/Reel