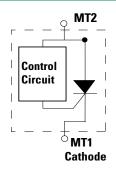
PLED Open LED Protectors PLEDxN Series


PLEDxN Series HF RoHS

Description

The open LED protector provides a switching electronic shunt path when a single LED in an LED string fails as an open circuit. This ensures the entire LED string will continue to function even if a single LED in the string does not. This provides higher reliable lighting functions in applications such as headlights, aircraft lights, airport runway lighting, roadside warning lights, etc. This component is compatible with one watt rated LEDs with a nominal 350 mA current at 3V. The SOD-123FL package is one of the lowest height profiles (1.1 mm) packages offered in the industry.


Pinout Diagram

Features & Benefits

- Fast switching
- Automatically resets after power cycle
- Compatible with industrial standard package SOD-123FL
- Compatible with industrial lighting environments
- IEC 61000-4-2 ESD 30kV (Air), 30kV (Contact)
- ESD protection of data lines in accordance with IEC 61000-4-2
- Low profile: maximum height of 1.1mm
- RoHS compliant and halogen-free
- MSL: Level 1 unlimited

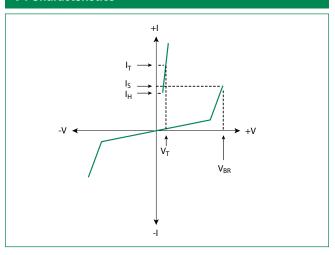
Schematic Symbol

Electrical Characteristics(All parameters are measured at T_a=25°C unless otherwise noted)

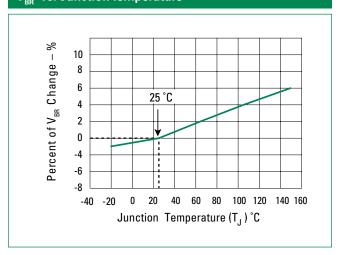
Part Number	Marking		_{вк} mAmps	I _{LEAK} V _{MT2} = 5V	I _H	I _s	Ι _τ @ V _τ	V _T @I _T = 350mA	Critical rate of rise dV/dt	Capacitance @1MHz, 2V bias
		Vo	lts	uA	mA	mA	Α	V	V	pF
		Min	Max	Max	Max	Max	Max	Max	Max	Max
PLED6N	P6N	5.5	7.5	250	12	70	1.0 1, 2	1.2	250	24

Notes

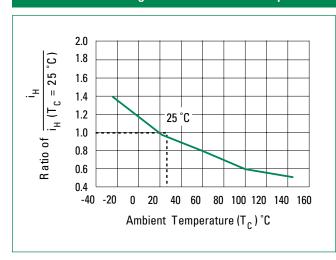
- 1) Standard FR-4 PCB with Copper Pads (2mm x 2mm/pad)
- 2) Aluminum PCB Pads (2mm x 3mm/pad)

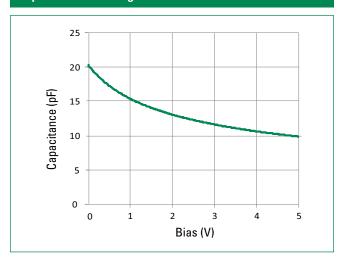

PLED Open LED Protectors PLEDxN Series

Thermal Considerations

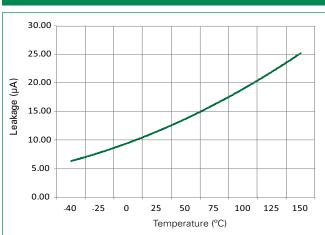

Symbol	Parameter	Value	Unit	
I _T	Average On–State Current, (T _A = 25°C)	1.0 1, 2	А	
V_{T}	On-state Voltage (T _A = 125°C)	1.0	V	
D	Payer Discipation (T. 25°C)	1.45 ¹	· W	
P_{D}	Power Dissipation (T _A = 25°C)	1.50 ²		
T_{J}	Operating Junction Temperature Range	-65 to +150	°C	
T _s	Storage Temperature Range		°C	
D	The second Decision and Leading to Lead	25 ¹	°C/W	
$R_{\Theta_{JL}}$	Thermal Resistance: Junction to Lead	20 ²		
В	Thermal Resistance: Junction to Ambient	80 1	°C/W	
R _{eJA}	Thermal nesistance: Junction to Ambient	50 ²		

- **Notes:**1) Standard FR-4 PCB with Copper Pads (2mm x 2mm/pad)
- 2) Aluminum PCB Pads (2mm x 3mm/pad)

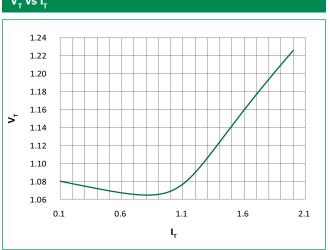

V-I Characteristics


V_{BR} vs. Junction Temperature

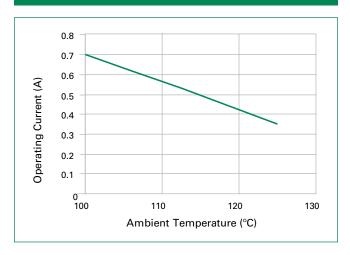
Normalized DC Holding Current vs. Ambient Temperature

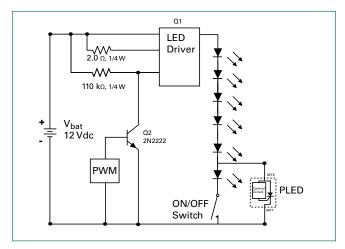


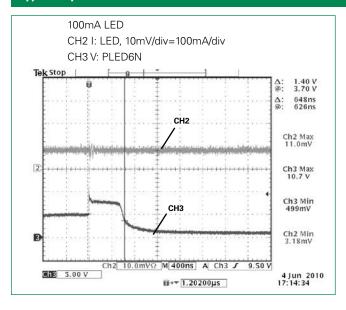
Capacitance vs Voltage

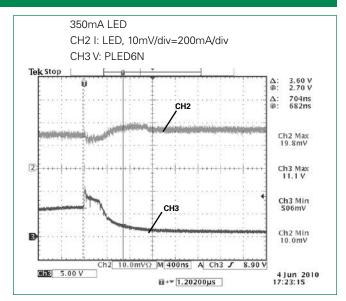


PLED Open LED Protectors PLEDxN Series


Leakage Current vs Temperature

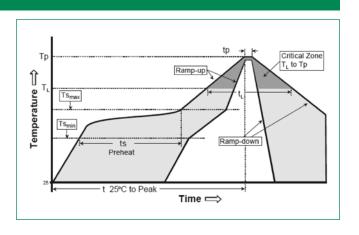

V_T vs I_T


Operating Current vs. Ambient Temperature



LED Interference Test Circuit

Typical Operation Waveforms



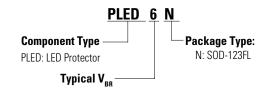
PLED Open LED Protectors PLEDxN Series

Soldering Parameters

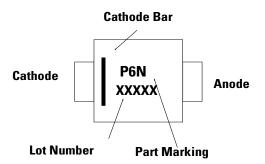
Reflow Cond	Pb – Free assembly	
Pre Heat	-Temperature Min (T _{s(min)})	150°C
	- Temperature Max (T _{s(max)})	200°C
	-Time (min to max) (t _s)	60 – 180 secs
Average ram	3°C/second max	
T _{S(max)} to T _L -	3°C/second max	
Reflow	- Temperature (T _L) (Liquidus)	217°C
	- Temperature (t _L)	60 - 150 seconds
Peak Temper	260+0/-5 °C	
Time within	30 seconds	
Ramp-down	6°C/second max	
Time 25°C to	8 minutes max	
Do not exce	260°C	

Physical Specifications

Terminal Material	Copper Alloy		
Terminal Finish	100% Matte Tin Plated		
Body Material	UL recognized epoxy meeting flammability classification V-0		


Packaging

Package	Description	Packaging	Industry
Code		Quantity	Standard
N	SOD-123FL	3000	EIA-481 Tape and Reel


Environmental Specifications

High Temperature Voltage Blocking	MIL-STD-750: Method 1040, Condition A, 80% min V _{BR} DC, 150°C, 504 hours
Temperature Cycling	MIL-STD-750: Method 1051, -65°C to 150°C, 15-minute dwell, 100 cycles
Biased Temperature & Humidity	EIA/JEDEC: JESD22-A101 80% min V _{BR} , 85°C, 85%RH, 1008 hours
Resistance to Solder Heat	MIL-STD-750: Method 2031 260°C, 10 seconds
Moisture Sensitivity Level	JEDEC-J-STD-020, Level 1
Burn-In Test	$I_{\tau} = 0.350 \text{Adc}, 1008 \text{hours}$

Part Numbering System

Part Marking System

