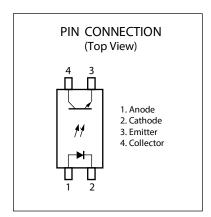


PS2861B-1

R08DS0100EJ0302 Rev.3.02 Feb 25, 2020

4-PIN SSOP PHOTOCOUPLER OPERATING AMBIENT TEMPERATURE 110°C

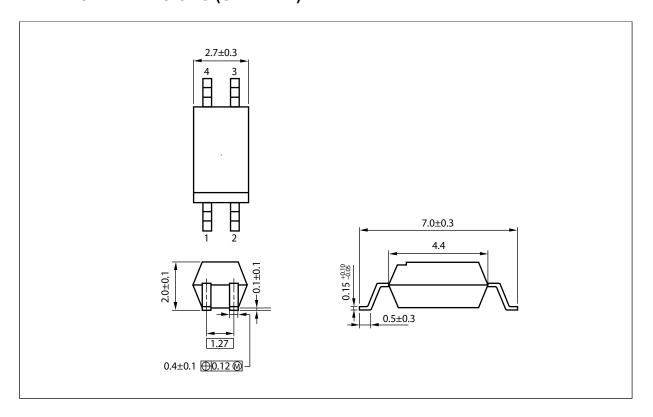
DESCRIPTION


The PS2861B-1 is an optically coupled isolator containing a GaAs light emitting diode and an NPN silicon phototransistor.

The package has a shield effect to cut off ambient light, and is mounted in a Shrink SOP (Small Outline Package) for high density applications.

Due to the high isolation voltage between the input and output, the PS2861B-1 is suitable for interface and signal transfer circuits that require surface or high-density mounting.

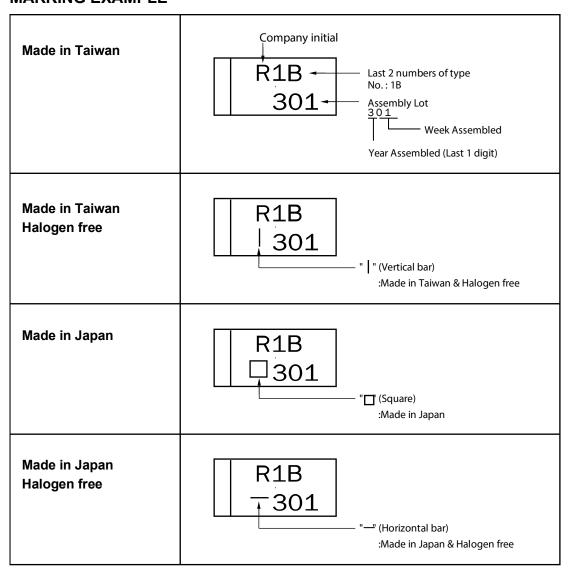
FEATURES


- Operating ambient temperature: 110°C
- Isolation distance (0.4 mm MIN.)
- High isolation voltage (BV = 3 750 Vr.m.s.)
- Shrink SOP (Small Outline Package) type
- High-speed switching ($t_r = 4\mu s$ TYP., $t_f = 5\mu s$ TYP.)
- Embossed tape product: PS2861B-1-F3: 3 500 pcs/reel
- Pb-Free product
- · Safety standards
 - UL approved: UL1577, Single protection
 - CSA approved: CAN/CSA-C22.2 No. 62368-1, Reinforced insulation
 - BSI approved: BS EN 62368-1, Reinforced insulation
 - SEMKO approved: EN 62368-1, IEC 62368-1, Reinforced insulation.
 - NEMKO approved: EN 62368-1, Reinforced insulation
 - FIMKO approved: EN 62368-1, Reinforced insulation
 - DEMKO approved: EN 62368-1, Reinforced insulation
 - CQC approved: GB8898, GB4943.1, Reinforced insulation
 - VDE approved: DIN EN 60747-5-5 (Option)

APPLICATIONS

- · Power supply
- Programmable logic controllers

PACKAGE DIMENSIONS (UNIT: mm)



Weight (4-pin SSOP) : 0.05 g (typ.)

PHOTOCOUPLER CONSTRUCTION

Parameter	Unit (MIN.)
Air Distance	5.0 mm
Creepage Distance	5.0 mm
Isolation Distance	0.4 mm

MARKING EXAMPLE

ORDERING INFORMATION

Part Number	Order Number	Solder Plating Specification	Packing Style	Safety Standard Approval	Application Part Number*1
PS2861B-1	PS2861B-1Y-A	Pb-Free and Halogen Free	50 pcs (Tape 50 pcs cut)	Standard products (UL, CSA, BSI,	PS2861B-1
PS2861B-1-F3	PS2861B-1Y-F3-A		Embossed Tape 3 500 pcs/reel	SEMKO, NEMKO, FIMKO, DEMKO, CQC approved)	
PS2861B-1-V	PS2861B-1Y-V-A		50 pcs (Tape 50 pcs cut)	UL, CSA, BSI, SEMKO, NEMKO,	
PS2861B-1-V-F3	PS2861B-1Y-V-F3-A	V-F3-A Embossed Tape 3 500 pcs/reel	Embossed Tape 3 500 pcs/reel	FIMKO, DEMKO, CQC, DIN EN 60747-5-5 approved	

Note: *1. For the application of the Safety Standard, following part number should be used.

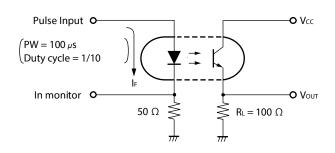
ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, unless otherwise specified)

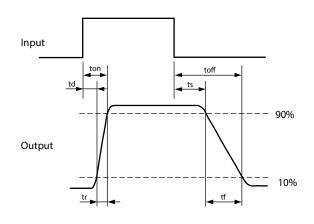
Parameter		Symbol	Ratings	Unit	
Diode	Forward Current (DC)	lF	50	mA	
	Reverse Voltage	V _R	6	V	
	Power Dissipation Derating	⊿P _D /°C	0.6	mW/°C	
	Power Dissipation	PD	60	mW	
	Peak Forward Current*1	I _{FP} 1	2.5	Α	
	Peak Forward Current*2	I _{FP} 2	1.0		
Transistor	Collector to Emitter Voltage	Vceo	70	V	
	Emitter to Collector Voltage	V _{ECO}	5	V	
	Collector Current	Ic	50	mA	
	Power Dissipation Derating	⊿Pc/°C	1.2	mW/°C	
	Power Dissipation	Pc	120	mW	
Isolation Voltage*3		BV	3 750	Vr.m.s.	
Operating Ambient Temperature		TA	-55 to +110	°C	
Storage Temperature		T _{stg}	-55 to +150	°C	

Notes: *1. PW = 10 μ s, Duty Cycle = 1%

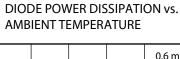
*2. PW = 100 μ s, Duty Cycle = 1%

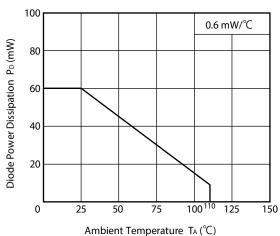
*3. AC voltage for 1 minute at T_A = 25°C, RH = 60% between input and output. Pins 1-2 shorted together, 3-4 shorted together.

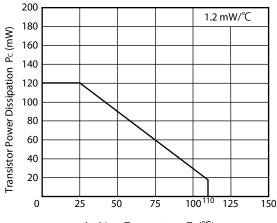

ELECTRICAL CHARACTERISTICS (TA = 25°C)

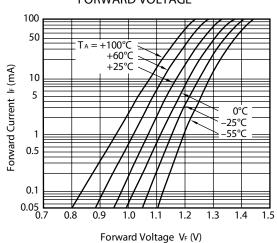

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Diode	Forward Voltage	V _F	I _F = 5 mA		1.1	1.4	V
	Reverse Current	I _R	V _R = 5 V			5	μA
	Terminal Capacitance	Ct	V = 0 V, f = 1 MHz		15		pF
Transistor	Collector to Emitter Dark Current	I _{CEO}	I _F = 0 mA, V _{CE} = 24 V			100	nA
Coupled	Current Transfer Ratio (I _C /I _F)*1	CTR	I _F = 5 mA, V _{CE} = 5 V	50	150	300	%
			I _F = 1 mA, V _{CE} = 5 V	10	50		
	Collector Saturation Voltage	VCE (sat)	I _F = 10 mA, I _C = 2 mA			0.3	V
	Isolation Resistance	R _{I-O}	V _{I-O} = 1 kV _{DC}	10 ¹¹			Ω
	Isolation Capacitance	C _{I-O}	V = 0 V, f = 1 MHz		0.4		pF
	Rise Time*2	tr	$V_{CC} = 5 \text{ V}, \text{ Ic} = 2 \text{ mA}, \text{ R}_{L} = 100 \Omega$		4		μS
	Fall Time*2	t _f			5		
	Turn-on Time*2	ton			5		
	Turn-off Time*2	t _{off}			5		

Notes: *1. CTR rank

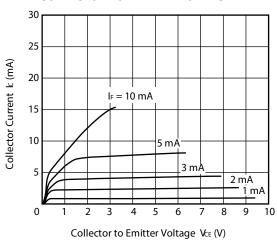

CTR rank	CTR (%)	Conditions
L	100 to 300	$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}$
	20 and larger	I _F = 1 mA, V _{CE} = 5 V
M	50 to 150	$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}$
	10 and larger	I _F = 1 mA, V _{CE} = 5 V
W	130 to 260	I _F = 5 mA, V _{CE} = 5 V
	26 and larger	I _F = 1 mA, V _{CE} = 5 V
N	50 to 300	I _F = 5 mA, V _{CE} = 5 V
	10 and larger	$I_F = 1 \text{ mA}, V_{CE} = 5 \text{ V}$


*2. Test Circuit for Switching Time

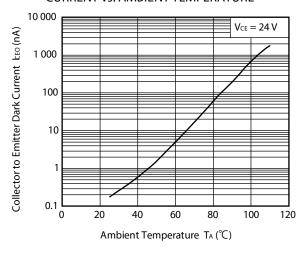

TYPICAL CHARACTERISTICS (T_A = 25°C, unless otherwise specified)

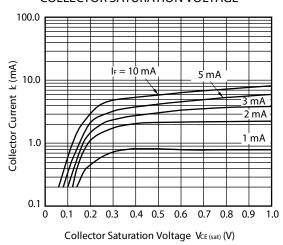

AMBIENT TEMPERATURE

TRANSISTOR POWER DISSIPATION vs.

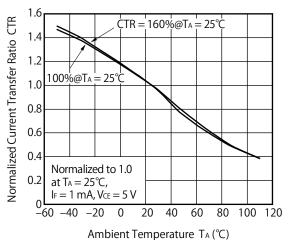


Ambient Temperature T_A ($^{\circ}$ C)

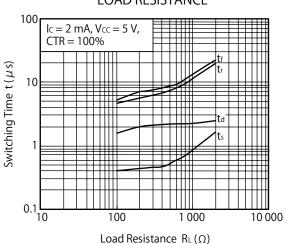

FORWARD CURRENT vs. FORWARD VOLTAGE


COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE

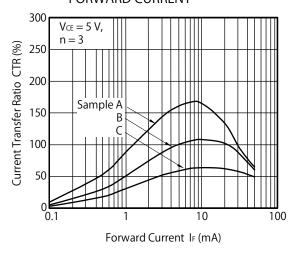
COLLECTOR TO EMITTER DARK CURRENT vs. AMBIENT TEMPERATURE



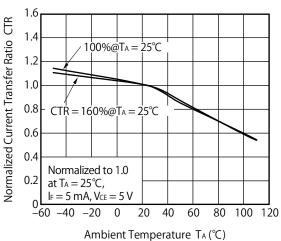
COLLECTOR CURRENT vs.
COLLECTOR SATURATION VOLTAGE



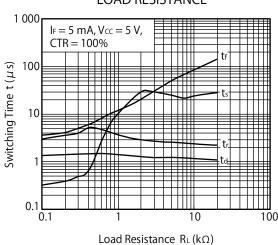
Remark The graphs indicate nominal characteristics.



SWITCHING TIME vs. LOAD RESISTANCE

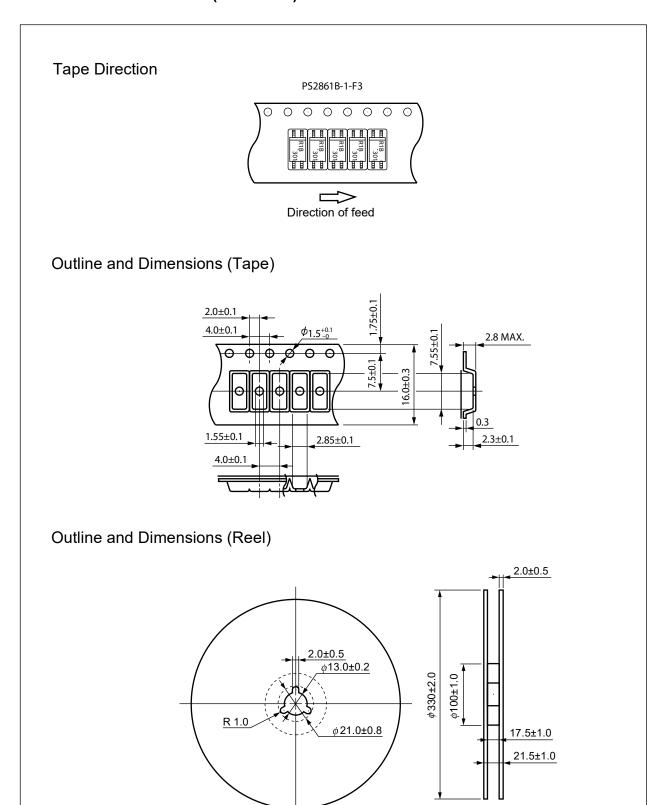


CURRENT TRANSFER RATIO vs. FORWARD CURRENT

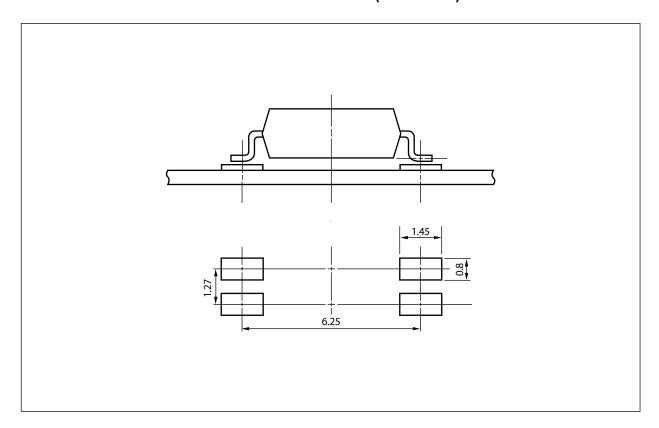


Remark The graphs indicate nominal characteristics.

NORMALIZED CURRENT TRANSFER RATIO vs. AMBIENT TEMPERATURE


SWITCHING TIME vs. LOAD RESISTANCE

FREQUENCY RESPONSE



TAPING SPECIFICATIONS (UNIT: mm)

Packing: 3 500 pcs/reel

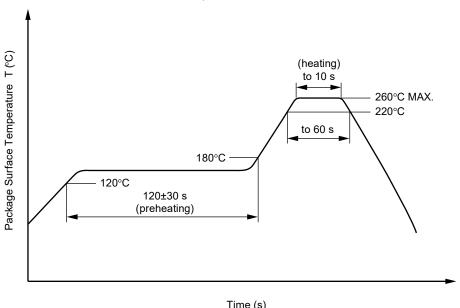
RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)

Remark All dimensions in this figure must be evaluated before use.

NOTES ON HANDLING

- 1. Recommended soldering conditions
 - (1) Infrared reflow soldering
 - Peak reflow temperature 260°C or below (package surface temperature)
 - · Time of peak reflow temperature Time of temperature higher than 220°C
 - Time to preheat temperature from 120 to 180°C 120±30 s
 - Number of reflows
 - Flux

10 seconds or less


60 seconds or less

Three

Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of

0.2 Wt% is recommended.)

Recommended Temperature Profile of Infrared Reflow

Time (s)

(2) Wave soldering

 Temperature 260°C or below (molten solder temperature)

 Time 10 seconds or less

 Preheating conditions 120°C or below (package surface temperature)

 Number of times One (Allowed to be dipped in solder including plastic mold portion.) Rosin flux containing small amount of chlorine (The flux with a maximum Flux

chlorine content of 0.2 Wt% is recommended.)

(3) Soldering by Soldering Iron

 Peak Temperature (lead part temperature) 350°C or below Time (each pins) 3 seconds or less

• Flux Rosin flux containing small amount of chlorine

(The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

- (a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead
- (b) Please be sure that the temperature of the package would not be heated over 100°C

(4) Cautions

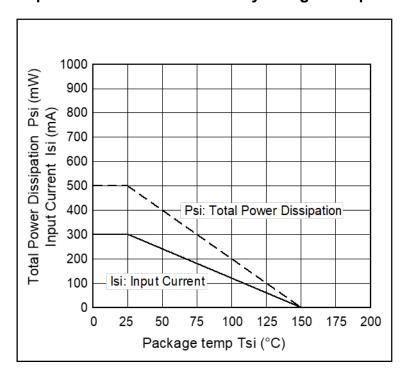
Flux Cleaning

Avoid cleaning with Freon based or halogen-based (chlorinated etc.) solvents.

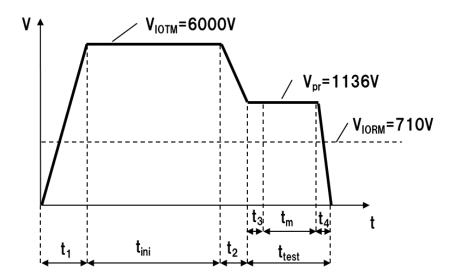
• Do not use fixing agents or coatings containing halogen-based substances.

- 2. Cautions regarding noise
 - Be aware that when voltage is applied suddenly between the photocoupler's input and output or between collector-emitters at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.
- 3. Measurement conditions of current transfer ratios (CTR), which differ according to photocoupler Check the setting values before use, since the forward current conditions at CTR measurement differ according to product.

When using products other than at the specified forward current, the characteristics curves may differ from the standard curves due to CTR value variations or the like. Therefore, check the characteristics under the actual operating conditions and thoroughly take variations or the like into consideration before use.


USAGE CAUTIONS

- 1. Protect against static electricity when handling.
- 2. Avoid storage at a high temperature and high humidity.
- 3. Avoid cleaning with Freon based or halogen-based (chlorinated etc.) solvents.
- 4. Do not use fixing agents or coatings containing halogen-based substances.

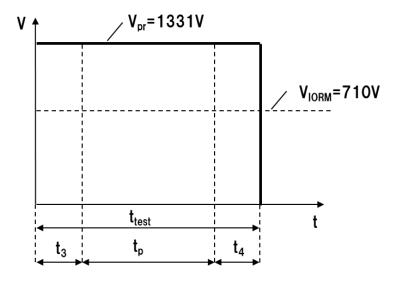

SPECIFICATION OF VDE MARKS LICENSE DOCUMENT

Parameter	Symbol	Rating	Unit
Climatic test class (IEC 60068-1/DIN EN 60068-1)		55/110/21	
Dielectric strength			
maximum operating isolation voltage	UIORM	710	V_{peak}
Test voltage (partial discharge test, procedure a for type test and	Upr	1 136	V_{peak}
random test)			
$U_{pr} = 1.6 \times U_{IORM}, P_d < 5 pC$			
Test voltage (partial discharge test, procedure b for all devices)	Upr	1 331	V_{peak}
$U_{pr} = 1.875 \times U_{IORM}, P_d < 5 pC$			
Highest permissible overvoltage	U _{ІОТМ}	6 000	V_{peak}
Degree of pollution (IEC 60664-1/DIN EN 60664-1 (VDE 0110-1)		2	
Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303-11))	CTI	175	
Material group (IEC 60664-1/DIN EN 60664-1 (VDE 0110-1))		III a	
Storage temperature range	T _{stg}	-55 to +150	°C
Operating temperature range	T _A	-55 to +110	°C
Isolation resistance, minimum value			
V _{IO} = 500 V dc at T _A = 25°C	Ris MIN.	10 ¹²	Ω
V _{IO} = 500 V dc at T _A MAX. at least 100°C	Ris MIN.	10 ¹¹	Ω
Safety maximum ratings (maximum permissible in case of fault, see			
thermal derating curve)			
Package temperature	Tsi	150	°C
Current (input current I _F , Psi = 0)	Isi	300	mA
Power (output or total power dissipation)	Psi	500	mW
Isolation resistance			
V _{IO} = 500 V dc at T _A = Tsi	Ris MIN.	10 ⁹	Ω

Dependence of maximum safety ratings with package temperature

Method a) Destructive Test, Type and Sample Test

 $t_1,t_2=1$ to 10 sec


 $t_3, t_4 = 1 \text{ sec}$

 $t_{m \, (PARTIAL \, DISCHARGE)} = 10 \, sec$

 t_{test} =12 sec

t_{ini}=60 sec

Method b) Non-destructive Test, 100% Production Test

 $t_3, t_4 = 0.1 \text{ sec}$

 $t_{p (PARTIAL DISCHARGE)} = 1.0 sec$

 t_{test} =1.2 sec

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or i any way allow it to enter the mouth.

All trademarks and registered trademarks are the property of their respective owners.