

PS8501, PS8501L1, PS8501L2, PS8501L3

HIGH SPEED ANALOG OUTPUT TYPE 8-PIN DIP PHOTOCOUPLER

R08DS0242EJ0100 Rev.1.00 Sep 22, 2021

DESCRIPTION

The PS8501, PS8501L1, PS8501L2 and PS8501L3 are 8-pin high speed photocouplers containing an AlGaAs LED on input side and a PN photodiode and a high speed amplifier transistor on output side on one chip.

The PS8501 is in a plastic DIP (Dual In-line Package).

The PS8501L1 is lead bending type for long creepage distance.

The PS8501L2 is lead bending type for long creepage distance (Gull-wing) for surface mount.

The PS8501L3 is lead bending type (Gull-wing) for surface mounting.

FEATURES

- Long creepage distance (8 mm MIN.: PS8501L1, PS8501L2)
- High supply voltage (Vcc = 35 V MAX.)
- High speed response (t_{PHL}, t_{PLH} = 0.8 µs MAX.)
- High isolation voltage (BV = 5 000 Vr.m.s.)
- TTL, CMOS compatible with a resistor
- Ordering number of tape product : PS8501L2-E3 : 1 000 pcs/reel

: PS8501L3-E3 : 1 000 pcs/reel

- Pb-Free product
- Safety standards
- UL approved: UL1577, Double protection
- CSA approved: CAN/CSA-C22.2 No.62368-1, Reinforced insulation
- BSI approved: BS EN 62368-1, Reinforced insulation
- SEMKO approved: EN 62368-1, IEC 62368-1, Reinforced insulation
- NEMKO approved: EN 62368-1, Reinforced insulation
- DEMKO approved: EN 62368-1, Reinforced insulation
- FIMKO approved: EN 62368-1, Reinforced insulation
- VDE approved: DIN EN 60747-5-5 (Option)

APPLICATIONS

- Interface for measurement or control equipment
- · Substitutions for relays and pulse transformers
- Modem, communications device
- · General purpose inverter

Start of mass production

Jun.2006

PACKAGE DIMENSIONS (UNIT: mm)

DIP Type

Weight: 0.55g (typ.)

Lead Bending Type (Gull-wing) For Surface Mount

Lead Bending Type For Long Creepage Distance

Lead Bending Type For Long Creepage Distance (Gull-wing) For Surface Mount

PHOTOCOUPLER CONSTRUCTION

Parameter	PS8501, PS8501L3	PS8501L1, PS8501L2
Air Distance (MIN.)	7 mm	8 mm
Creepage Distance (MIN.)	7 mm	8 mm
Isolation Distance (MIN.)	0.4 mm	0.4 mm

MARKING EXAMPLE

ORDERING INFORMATION

Part Number	Order Number	Solder Plating Specification	Packing Style	Safety Standard Approval	Application Part Number*1
PS8501	PS8501-AX	Pb-Free	Magazine case 50 pcs	Standard products	PS8501
PS8501L1	PS8501L1-AX	(Ni/Pd/Au)		(UL, CSA, BSI,	PS8501L1
PS8501L2	PS8501L2-AX			SEMKO, NEMKO,	PS8501L2
PS8501L3	PS8501L3-AX			DEMKO, FIMKO	PS8501L3
PS8501L2-E3	PS8501L2-E3-AX		Embossed Tape 1 000 pcs/reel	approved)	PS8501L2
PS8501L3-E3	PS8501L3-E3-AX				PS8501L3
PS8501-V	PS8501-V-AX		Magazine case 50 pcs	UL, CSA, BSI,	PS8501
PS8501L1-V	PS8501L1-V-AX			SEMKO, NEMKO,	PS8501L1
PS8501L2-V	PS8501L2-V-AX			DEMKO, FIMKO,	PS8501L2
PS8501L3-V	PS8501L3-V-AX			DIN EN 60747-5-5	PS8501L3
PS8501L2-V-E3	PS8501L2-V-E3-AX		Embossed Tape 1 000 pcs/reel	approved	PS8501L2
PS8501L3-V-E3	PS8501L3-V-E3-AX				PS8501L3

Notes*: 1. For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS (T_A = 25 °C, unless otherwise specified)

	Parameter	Symbol	Ratings	Unit
Diode	Forward Current *1	lF	25	mA
	Reverse Voltage	VR	5	V
Detector	Supply Voltage	Vcc	35	V
	Output Voltage	Vo	35	V
	Output Current	lo	8	mA
	Power Dissipation *2	Pc	100	mW
Isolation \	oltage *3	BV	5 000	Vr.m.s.
Operating	Ambient Temperature	TA	-55 to +100	°C
Storage T	emperature	T _{stg}	-55 to +125	°C

Notes*: 1. Reduced to 0.33 mA/°C at $T_A = 70$ °C or more.

- 2. Reduced to 2.0 mW/°C at $T_A = 75$ °C or more.
- 3. AC voltage for 1 minute at T_A = 25 °C, RH = 60 % between input and output. Pins 1-4 shorted together, 5-8 shorted together.

ELECTRICAL CHARACTERISTICS (T_A = 25 °C)

	Parameter	Symbol	Conditions	MIN.	TYP.*1	MAX.	Unit
Diode	Forward Voltage	VF	I _F = 16 mA		1.7	2.2	V
	Reverse Current	lR	V _R = 3 V			10	μA
	Forward Voltage Temperature Coefficent	ΔV _F /ΔT _A	I _F = 16 mA		-2.1		mV/°C
	Terminal Capacitance	Ct	V = 0 V, f = 1 MHz		30		pF
Detector	High Level Output Current	Іон (1)	I _F = 0 mA, V _{CC} = V _O = 5.5 V		3	500	nA
	High Level Output Current	Іон (2)	I _F = 0 mA, V _{CC} = V _O = 35 V			100	μΑ
	Low Level Output Voltage	Vol	I _F = 16 mA, V _{CC} = 4.5 V, I _O = 2.4 mA		0.15	0.4	V
	Low Level Supply Current	Iccl	I _F = 16 mA, V _O = Open, V _{CC} = 35 V		150		μΑ
	High Level Supply Current	Іссн	I _F = 0 mA, V ₀ = Open, V _{CC} = 35 V		0.01	1	μΑ
	DC Current Gain	hfE	Vo = 5 V, Io = 3 mA		65		
Coupled	Current Transfer Ratio	CTR	I _F = 16 mA, V _{CC} = 4.5 V, V _O = 0.4 V	15			%
	Isolation Resistance	Rı-o	Vi-o = 1 kVDC	10 ¹¹			Ω
	Isolation Capacitance	Cı-o	V = 0 V, f = 1 MHz		0.7		pF
	Propagation Delay Time $(H \rightarrow L)^{*2}$	tрнL	$I_F = 16$ mA, $V_{CC} = 5$ V, $R_L = 1.9$ k Ω		0.22	0.8	μs
	Propagation Delay Time $(L \to H)^{*2}$	t PLH	IF = 16 mA, Vcc = 5 V, RL = 1.9 $k\Omega$		0.35	0.8	μs

Notes*: 1. Typical values at $T_A = 25$ °C.

2. Test circuit for propagation delay time

Remark: C_L includes probe and stray wiring capacitance.

USAGE CAUTIONS

- 1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
- 2. By-pass capacitor of more than 0.1 μ F is used between Vcc and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm.
- 3. Pins 1, 4 (which is an NC*1 pin) can either be connected directly to the GND pin on the LED side or left open. Unconnected pins should not be used as a bypass for signals or for any other similar purpose because this may degrade the internal noise environment of the device.
 - *1 NC: Non-Connection (No Connection)
- 4. Avoid storage at a high temperature and high humidity.
- 5. Avoid cleaning with Freon based or halogen-based (chlorinated etc.) solvents.
- 6. Do not use fixing agents or coatings containing halogen-based substances.

TYPICAL CHARACTERISTICS (T_A = 25 °C unless otherwise specified)

MAXIMUM FORWARD CURRENT

CURRENT TRANSFER RATIO vs. FORWARD CURRENT

DETECTOR POWER DISSIPATION vs. AMBIENT TEMPERATURE

OUTPUT CURRENT vs. OUTPUT VOLTAGE

NORMALIZED CURRENT TRANSFE RATIO vs. AMBIENT TEMPERATUR

Remark The graphs indicate nominal characteristics.

OUTPUT VOLTAGE vs. FORWARD CURRENT $V_{CC} = 5 V$ $I_F V_{CC}$ 6 Output Voltage Vo (V) 5 4 3 $R_L = 1.9 \text{ k}\Omega$ 2 $5.5 k\Omega$ 0 2 4 6 10 12 14 16 Forward Current I_F (mA)

1 000 | F = 0 mA | 100 | V_{CC} = V_O = 35 V | V_{CC} = V_O = 5.5 V

HIGH LEVEL OUTPUT CURRENT

vs. AMBIENT TEMPERATURE

PROPAGATION DELAY TIME vs. AMBIENT TEMPERATURE

Remark The graphs indicate nominal characteristics.

TAPING SPECIFICATIONS (UNIT: mm)

RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)

Remark All dimensions in this figure must be evaluated before use.

NOTES ON HANDLING

- 1. Recommended soldering conditions
 - (1) Infrared reflow soldering

Peak reflow temperature
 260 °C or below (package surface temperature)

Time of peak reflow temperature
 Time of temperature higher than 220 °C
 10 seconds or less
 60 seconds or less

 \bullet Time to preheat temperature from 120 to 180 °C $\,$ 120±30 s $\,$

• Number of reflows Three

• Flux

Rosin flux containing small amount of chlorine
(The flux with a maximum chlorine content of

0.2 Wt% is recommended.)

Recommended Temperature Profile of Infrared Reflow

Time (s)

(2) Wave soldering

• Temperature 260 °C or below (molten solder temperature)

• Time 10 seconds or less

• Preheating conditions 120 °C or below (package surface temperature)

Number of times
 Flux
 One (Allowed to be dipped in solder including plastic mold portion.)
 Rosin flux containing small amount of chlorine (The flux with a maximum

chlorine content of 0.2 Wt% is recommended.)

(3) Soldering by Soldering Iron

Peak Temperature (lead part temperature)
 Time (each pins)
 350 °C or below
 3 seconds or less

• Flux Rosin flux containing small amount of chlorine

(The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

- (a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead
- (b) Please be sure that the temperature of the package would not be heated over 100 °C
- (4) Cautions
 - Flux Cleaning

Avoid cleaning with Freon based or halogen-based (chlorinated etc.) solvents.

• Do not use fixing agents or coatings containing halogen-based substances.

2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output or between V_{CC} -emitters at startup, the output side may enter the on state, even if the voltage is within the absolute maximum ratings.

SPECIFICATION OF VDE MARKS LICENSE DOCUMENT

Parameter	Symbol	Rating	Unit
Climatic test class (IEC 60068-1/DIN EN 60068-1)		55/100/21	
Dielectric strength			
maximum operating isolation voltage	Ulorm	1 130	V_{peak}
Test voltage (partial discharge test, procedure a for type test and random test)	Upr	1 808	Vpeak
$U_{pr} = 1.6 \times U_{IORM}, P_d < 5 pC$	Орі	1 000	v peak
Test voltage (partial discharge test, procedure b for all devices)	Upr	2 119	V _{peak}
$U_{pr} = 1.875 \times U_{IORM}, P_d < 5 pC$	Opr	2 119	v peak
Highest permissible overvoltage	Uютм	8 000	V_{peak}
Degree of pollution (DIN EN 60664-1 VDE 0110 Part 1)		2	
Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303 Part 11))	CTI	175	
Material group (DIN EN 60664-1 VDE 0110 Part 1)		III a	
Storage temperature range	T _{stg}	-55 to +125	°C
Operating temperature range	TA	-55 to +100	°C
Isolation resistance, minimum value			
$V_{IO} = 500 \text{ V dc at } T_A = 25 \text{ °C}$	Ris MIN.	10 ¹²	Ω
Vio = 500 V dc at TA MAX. at least 100 °C	Ris MIN.	10 ¹¹	Ω
Safety maximum ratings (maximum permissible in case of fault, see thermal			
derating curve)			
Package temperature	Tsi	175	°C
Current (input current IF, Psi = 0)	Isi	400	mA
Power (output or total power dissipation)	Psi	700	mW
Isolation resistance			
Vio = 500 V dc at T _A = Tsi	Ris MIN.	10 ⁹	Ω

Dependence of maximum safety ratings with package temperature

Method a) Destructive Test, Type and Sample Test

 t_1 , t_2 = 1 to 10 sec

 t_3 , $t_4 = 1$ sec

 $t_{\text{m(PARTIAL DISCHARGE)}}$ = 10 sec t_{test} = 12 sec

 t_{ini} = 60 sec

Method b) Non-destructive Test, 100% Production Test

 t_3 , $t_4 = 0.1 sec$

 $t_{m(PARTIAL\ DISCHARGE)} = 1.0\ sec$

 $t_{\text{test}} = 1.2 \text{ sec}$

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or i any way allow it to enter the mouth.

All trademarks and registered trademarks are the property of their respective owners.