
Q6008LTH1LED Series

Agency Approval		
Agency	Agency File Number	
R L	L Package : E71639	

Main Features			
Symbol	Value	Unit	
I _{T(RMS)}	8	А	
V _{DRM} /V _{RRM}	600	V	
DIAC V _{BO}	33 to 43	V	

Schematic Symbol

Additional Information

Datasheet

Description

The Quadrac is an internally triggered Triac designed for AC switching and phase control applications. It is a Triac and DIAC in a single package, which saves user expense by eliminating the need for separate Triac and DIAC components.

RoHS

Q6008LTH1LED series is designed to meet low load current characteristics typical in LED lighting applications.

By keeping holding current at 6mA maximum, this Quadrac series is characterized and specified to perform best with LED loads. The Q6008LTH1LED series is best suited for LED dimming controls to obtain the lowest levels of light output with a minimum probability of flickering.

Q6008LTH1LED series is offered in the industry standard TO-220AB package with an isolated mounting tab that makes it best suited for adding an external heat sink.

Features	Benefits
 As low as 6mA max holding current 	 Provides full control of light out put at the extreme low end of load conditions.
• UL recognized TO-220AB package	 2500V _{AC} min isolation between mounting tab and active terminals
 110°C rated junction temperature 	 Improves margin of safe operation with less heat sinking required
 di/dt performance of 70A/µs 	 Enable survivability of typically LED load operating characteristics
 QUADRAC version includes intergrated DIAC 	 Simplicity of circuit design & layout
 RoHS compliant 	

Excellent for AC switching and phase control applications such as lighting and motor speed controls. Typical applications are AC solid-state switches, light dimmers with LED loads, small low current motor in power tools,

Applications

Internally constructed isolated package is offered for ease of heat sinking with highest isolation voltage.

and low current motors in home/brown goods appliances.

Absolute Maximum Ratings

Symbol	Parameter		Value	Unit
I _{T(RMS)}	RMS forward current	Tc = 80°C	8	A
		single half cycle; f = 50Hz; T _J (initial) = 25°C	80	A
Peak non-repetitive surge	Peak non-repetitive surge current	single half cycle; f = 60Hz; T _J (initial) = 25°C	85	
l²t	l ² t value for fusing	t _p = 8.3ms	30	A ² s
di/dt	Critical rate-of-rise of on-state current	f = 60Hz; T _J =110°C	70	A/µs
I _{GM}	Peak gate current	T _J = 110°C	1.5	A
T _{stg}	Storage temperature range		-40 to 150	°C
T	Operating junction temperature range		-40 to 110	°C

Electrical Characteristics (T_J = 25°C, unless otherwise specified) – Alternistor Quadrac

Symbol	Test Conditions		Value	Unit
I _H	I _T = 15mA (initial)	MAX.	6	mA
dv/dt	$V_{\rm D} = V_{\rm DRM}$; gate open; $T_{\rm J} = 110^{\circ}$ C	MIN.	50	V/µs
dv/dt(c)	$di/dt(c) = 0.54 \times I_{T(rms)} / ms; T_{J} = 110^{\circ}C$	MIN.	10	V/µs
t _{gt}	(note 1)	TYP.	3	μs

(1) Reference test circuit in figure 7 and waveform in figure 8; $C_{_{\rm T}}$ = 0.1 μF with 0.1 μs rise time.

Trigger DIAC Specifications

Symbol	Test Conditions		Value	Unit
ΔV _{BO}	Breakover Voltage Symmetry	MAX.	3	V
	Dreakever Veltage, forward and reverse	MIN.	33	M
V _{BO}	Breakover Voltage, forward and reverse	MAX.	43	V
$[\Delta V \pm]$	Dynamic Breakback Voltage, forward and reverse (note 1)	MIN.	5	V
I _{BO}	Peak Breakover Current	MAX.	25	uA
C _T	Trigger Firing Capacitance	MAX.	0.1	μF

(1) Reference test circuit in figure 7 and waveform in figure 8.

Static Characteristics					
Symbol	Test Conditions			Value	Unit
V _{TM}	$I_{T} = 1.41 \times I_{T(rms)} A; t_{p} = 380 \mu s$		MAX.	1.6	V
				10	
I _{DRM} /I _{RRM}	V _{DRM} / V _{RRM}	T _J = 110°C	MAX.	500	μΑ

Thermal Resistances

Symbol	Parameter	Value	Unit
R _{θ(J-C)}	Junction to case (AC)	2.8	°C/W
R _{e(J-A)}	Junction to ambient	50	°C/W

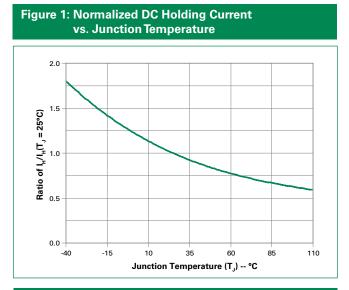
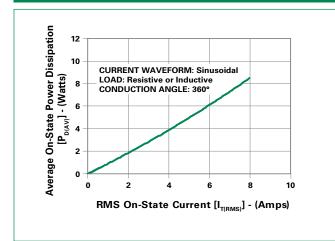




Figure 3: Power Dissipation vs. RMS On-State Current (Typical)

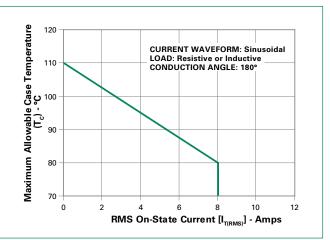
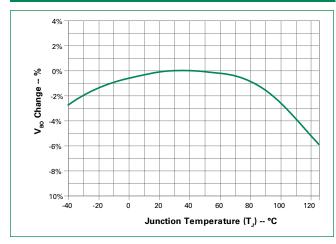


Figure 5: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal Load: Resistive RMS On-State Current: [I_{TRMS}]: Maximum Rated


Value at Specific Case Temperature

Notes:

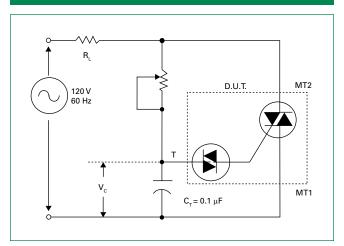
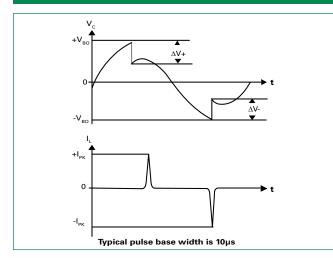
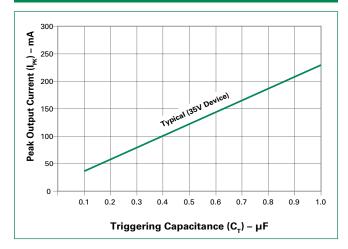
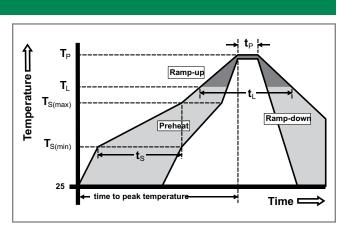

- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction
- temperature has returned to steady-state rated value.

Figure 6: DIAC V_{BO} Change vs. Junction Temperature

Figure 7: Test Circuit

Figure 8: Test Circuit Waveform


Figure 9: Peak Output Current vs Triggering Capacitance (Per Figure 7)

Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (LiquidusTemp) (T _L) to peak		5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
D (I	-Temperature (T _L) (Liquidus)	217°C	
Reflow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260°C +0/-5	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _p)		8 minutes Max.	
Do not exceed		280°C	

Physical Specifications		
Terminal Finish	1005 Matte Tin-plated	
Body Material	UL Recognized epoxy meeting flammability classification 94v-0	
Lead Material	Copper Alloy	

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications		
Test	Specifications and Conditions	
High Temperature Voltage Blocking	MIL-STD-750: Method 1040, Condition A Rated V _{DRM} (VAC-peak), 110°C, 1008 hours	
Temperature Cycling	MIL-STD-750: Method 1051 -40°C to 150°C, 15-minute dwell, 100 cycles	
Biased Temperature & Humidity	EIA/JEDEC: JESD22-A101 320VDC, 85°C, 85%RH, 1008 hours	
High Temp Storage	MIL-STD-750: Method 1031 150°C, 1008 hours	
Low-Temp Storage	-40°C, 1008 hours	
Resistance to Solder Heat	MIL-STD-750: Method 2031 260°C, 10 seconds	
Solderability	ANSI/J-STD-002, Category 3, Test A	
Lead Bend	MIL-STD-750: Method 2036, Condition E	

Environmental Specifications