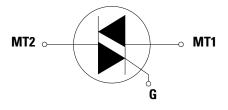

## 10 A High Temperature Alternistor and Standard (High Communication) Triacs







#### **Agency Approvals and Environmental**


### **Environmental Approvals** RoHS 5

Note: UL recognition agency file number E71639 (L package only)

#### **Main Features**

| Characteristic       | Value    | Unit |
|----------------------|----------|------|
| I <sub>T(RMS)</sub>  | 10       | А    |
| $V_{DRM}/V_{RRM}$    | 800      | V    |
| I <sub>GT (Q1)</sub> | 10 to 50 | mA   |

### **Schematic Symbol**



### **Description**

This 10 A high temperature Alternistor and Standard TRIAC series. offered in TO-220AB, TO-220 isolated, and TO-263 packages, has 150 °C maximum junction temperature and 120 A ITSM (60 Hz).

This series enables easier thermal management and higher surge handling capability in AC power control applications such as heater control, motor speed control, lighting controls, and static switching relays. Alternistor TRIAC operates in quadrant I, II, and III, and offers high performance in applications requiring high commutation capability.

### **Features & Benefits**

- Recognized to UL 1557 as an Electrically Isolated Semiconductor Device
- Glass-passivated junctions
- Surge capability up to 120 A and 60 Hz
- The L-package has an isolation rating of 2500 VRMS
- Solid-state switching eliminates arcing or contact bounce that creates voltage transients
- No contacts to wear out from

- reaction of switching events
- Restricted (or limited) RFI generation, depending on activation point sine wave
- Requires only a small gate activation pulse in each halfcycle
- RoHS compliant

### **Applications**

- Excellent for AC switching and phase control applications such as heating, lighting, and motor speed controls. Typical applications are AC solid-state switches, light dimmers, power tools, lawn care equipment, home/brown goods, and white goods appliances.
- Alternistor Triacs (no snubber required) are used in applications with extremely inductive loads requiring highest commutation performance.
- Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.
- Standard type devices normally operate in Quadrants I & III triggered from AC line



# 10 A High Temperature Alternistor and Standard (High Communication) Triacs

### Maximum Ratings — Alternistor Triac (3 Quadrants)

| Symbol              | Parameter                                   | Value                                            | Unit                            |                         |        |
|---------------------|---------------------------------------------|--------------------------------------------------|---------------------------------|-------------------------|--------|
|                     |                                             | QJ8010LHy                                        | $T_{\rm C} = 120^{\circ} \rm C$ |                         |        |
| I <sub>T(RMS)</sub> | RMS on-state current (full sine wave)       | QJ8010RHy<br>QJ8010NHy                           | T <sub>C</sub> = 130°C          | 10                      | А      |
| 1                   | Non repetitive surge peak on-state current  | f = 50  Hz, 1                                    | t = 20 ms                       | 100                     | А      |
| TSM                 | (full cycle, T <sub>J</sub> initial = 25°C) | f = 60  Hz, t = 16.7  ms                         |                                 | 120                     | А      |
| l²t                 | I <sup>2</sup> t Value for fusing           | $t_{0} = 8.3 \text{ ms}$                         |                                 | 60                      | $A^2s$ |
| di/dt               | Critical rate of rise of on-state current   | $f = 60 \text{ Hz}, T_{J} = 150^{\circ}\text{C}$ |                                 | 70                      | A/µs   |
| I <sub>GTM</sub>    | Peak gate trigger current                   | $t_p = 20 \ \mu s, T_J = 150^{\circ} C$          |                                 | 4                       | А      |
| $P_{G(AV)}$         | Average gate power dissipation              | T <sub>J</sub> = 150°C                           |                                 | 0.5                     | W      |
| $T_{stg}$           | Storage temperature range                   | -                                                |                                 | -40 to 150              | °C     |
| $T_{J}$             | Operating junction temperature range        | -                                                |                                 | -40 to 150              | °C     |
| $V_{DSM}/V_{RSM}$   | Peak Non-repetitive Blocking Voltage        | Pulse Width                                      | n = 100 µs                      | $V_{DRM}/V_{RRM} + 200$ | V      |

### **Maximum Ratings — Standard Triac**

| Symbol             | Paramet                                                                                                | Value                             | Unit                                           |                           |        |
|--------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------|---------------------------|--------|
| $V_{DSM}//V_{RSM}$ | Peak non-repetitive blocking voltage                                                                   | Pulse Width =100 μs               | 800 V                                          | $V_{DRM}/V_{RRM} + 200 V$ | V      |
| 1                  | RMS on-state current (full sine wave)                                                                  | QJxx10Ly                          | $T_{\rm C} = 120^{\circ}{\rm C}$               | 10                        | А      |
| T(RMS)             | nivis on-state current (run sine wave)                                                                 | QJxx10Ry/QJxx10Ny                 | $T_{\rm C} = 130^{\circ}{\rm C}$               | 10                        | A      |
|                    | Non repetitive surge peak on-state current                                                             | f = 50  Hz, t = 20  ms            | QJxx10xy                                       | 100                       | А      |
| TSM                | (full cycle, $T_J$ initial = 25°C)                                                                     | f = 60  Hz, t = 16.7  ms          | QJxx10xy                                       | 120                       | A      |
| l²t                | I <sup>2</sup> t Value for fusing                                                                      | $t_p = 8.3 \text{ ms}$            | QJxx10xy                                       | 60                        | $A^2s$ |
| di/dt              | Critical rate of rise of on-state current $I_G = 200 \text{mA}$ with $\leq 0.1 \mu \text{s}$ rise time | f = 60 Hz, T <sub>J</sub> =150 °C |                                                | 70                        | A/µs   |
| I <sub>GTM</sub>   | Peak gate trigger current                                                                              | $t_p = 20 \mu\text{s}, T_J =$     | t <sub>p</sub> = 20 μs, T <sub>J</sub> =150 °C |                           | A/µs   |
| $P_{G(AV)}$        | Average gate power dissipation                                                                         | T <sub>J</sub> =150 °C            |                                                | 0.5                       | W      |
| $T_{stg}$          | Storage temperature range                                                                              | -                                 |                                                | -40 to 150                | °C     |
| $T_{J}$            | Operating junction temperature range                                                                   | -                                 |                                                | -40 to 150                | °C     |

Note: xx=voltage/10, x=package, y=sensitivity

#### **Thermal Characteristics**

| Symbol              | Parameter                                         | Value                                    | Unit |      |
|---------------------|---------------------------------------------------|------------------------------------------|------|------|
| $R_{\Theta(J-C)}$   | Thermal Resistance, junction-to-case (AC)         | QJ8010RHy/QJ8010NHy<br>QJ8010Ry/QJ8010Ny |      | °C/W |
|                     |                                                   | QJ8010LHy/QJ8010Ly                       | 2.3  |      |
| D                   | The arrest Desistance is marking to employed (AC) | QJ8010RHy/QJ8010Ry                       | 45   | 0000 |
| R <sub>e(J-A)</sub> | Thermal Resistance, junction-to-ambient (AC)      | QJ8010LHy/QJ8010Ly                       | 90   | °C/W |



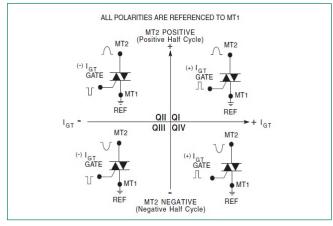
## 10 A High Temperature Alternistor and Standard (High Communication) Triacs

### Electrical Characteristics (TJ = 25°C, unless otherwise specified) — Alternistor Triac (3 Quadrants)

| Symbol          | Description              | Conditions                                                             |          | QJ8010xH3 |     | QJ8010xH3 QJ8010xH4 |     | QJ8010xH5 |     | Unit |     |      |      |
|-----------------|--------------------------|------------------------------------------------------------------------|----------|-----------|-----|---------------------|-----|-----------|-----|------|-----|------|------|
| Syllibol        |                          |                                                                        | MIN      | TYP       | MAX | MIN                 | TYP | MAX       | MIN | TYP  | MAX | Onit |      |
| I <sub>GT</sub> | DC Gate Trigger Current  | $V_{_{\rm D}}$ = 12 V, $R_{_{\rm L}}$ = 60 $\Omega$                    | 1-11-111 | -         | -   | 10                  | -   | -         | 35  | -    | -   | 50   | mA   |
| $V_{\rm GT}$    | DC Gate Trigger Voltage  | $V_D = 12 \text{ V}, R_L = 60 \Omega$ I-II-III                         |          | -         | -   | 1.3                 | -   | -         | 1.3 | -    | -   | 1.3  | V    |
| $V_{\rm GD}$    | Gate Non-trigger Voltage | $V_{D} = V_{DRM}, R_{L} = 3.3 \text{ k}\Omega, T_{J} = 150 \text{ °C}$ | 1-11-111 | 0.2       | -   | -                   | 0.2 | -         | -   | 0.2  | -   | -    | V    |
| I <sub>H</sub>  | Holding Current          | $I_{T} = 100 \text{ mA}$                                               |          | -         | -   | 15                  | -   | -         | 40  | -    | -   | 50   | mA   |
| dv/dt           | Critical Rate-of-rise of | $V_D = V_{DRM}$ , Gate Open, $T_J = 150  ^{\circ}\text{C}$             |          | 150       | -   | -                   | 450 | -         | -   | 700  | -   | -    | V/µs |
| uv/ut           | Off-stage Voltage        | $V_D = 2/3 V_{DRM}$ , Gate Open, $T_J = 150  ^{\circ} C$               |          | 200       | -   | -                   | 600 | -         | -   | 1000 | -   | -    | ν/μδ |
| (dv/dt)c        |                          | (di/dt)/c = 6.5  A/ms, TJ = 150 °C                                     |          | 10        | -   | -                   | 20  | -         | -   | 30   | -   | -    | V/µs |
| t <sub>gt</sub> | Turn-on Time             | $I_{G} = 2 \times I_{GT}, P_{W} = 15 \mu s, IT = 14.1 A$               | (pk)     | -         | 4   | -                   | -   | -         | 7   | -    | -   | 9    | -    |

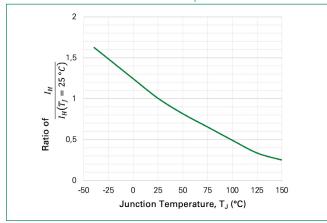
### Electrical Characteristics (TJ = 25°C, unless otherwise specified) — Standard Triac

| Comple al       | Description                       | Canditions                                                              | ns Quadrant             |         | Va      | Value   |                       |  |
|-----------------|-----------------------------------|-------------------------------------------------------------------------|-------------------------|---------|---------|---------|-----------------------|--|
| Symbol          | bol Description Conditions Q      |                                                                         | Quadra                  | ant     | Qxx10x4 | Qxx10x5 | Unit                  |  |
|                 | DC Cata Trigger Current           | V 12V B 60.0                                                            | I - II - III            | NAAV    | 25      | 50      | A                     |  |
| I <sub>GT</sub> | DC Gate Trigger Current           | $V_D = 12V R_L = 60 \Omega$                                             | IV                      | MAX.    | 50      | 50      | mA                    |  |
| V <sub>GT</sub> | DC Gate Trigger Voltage           | $V_D = 12V R_L = 60 \Omega$ ALL                                         |                         | MAX.    | 1.3     |         | V                     |  |
| $V_{GD}$        | Gate Non-trigger Voltage          | $V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 150^{\circ}\text{C}$ ALL |                         | MIN.    | 0.2     |         | V                     |  |
| I <sub>H</sub>  | Holding Current                   | $I_T = 100 \text{mA}$                                                   | $I_{T} = 100 \text{mA}$ |         | 35      | 50      | mA                    |  |
| dv/dt           | Critical Rate-of-rise of Off-     | $V_D = V_{DRM}$ Gate Open $T_J = 150$ °C                                | 800V                    | MIN.    | 600     | 1000    | \// <sub>1</sub> , 10 |  |
| av/at           | stage Voltage $V_D = 2/3 V_{DRM}$ | $V_D = 2/3 V_{DRM}$ Gate Open $T_J = 150$ °C                            | 8007                    | IVIIIN. | 800     | 1200    | V/µs                  |  |
| (dv/dt)c        |                                   | $(di/dt)c = 6.5 \text{ A/ms T}_J = 150^{\circ}\text{C}$                 |                         | TYP.    | 3       | 4       | V/µs                  |  |
|                 | t <sub>gt</sub> Turn-on Time      | $I_{G} = 2 \times I_{GT} P_{W} = 15 \mu s I_{T} = 14.1 A(pk)$           | 1 – 11 – 111            | TVD     | 1-2-6   | 1-2-6   |                       |  |
| t <sub>gt</sub> |                                   |                                                                         | IV                      | TYP.    | 10      | 11      | μs                    |  |


### **Static Characteristics**

| Symbol    | Description                        | Conditions                                 | Maximum Value | Unit |
|-----------|------------------------------------|--------------------------------------------|---------------|------|
| $V_{TM}$  | Peak On-state Voltage              | $I_{TM} = 14.1A t_p = 380 \mu s$           | 1.60          | V    |
| 1 /1      | Off-state Current, Peak Repetitive | $V_D = V_{DRM} = V_{RRM}$ , $T_J = 25$ °C  | 10            | μΑ   |
| DRM / RRM |                                    | $V_D = V_{DRM} = V_{RRM}$ , $T_J = 150$ °C | 4             | mA   |




## 10 A High Temperature Alternistor and Standard (High Communication) Triacs

**Figure 1:** Definition of Quadrants

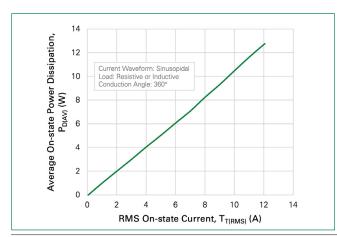
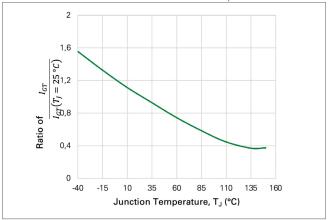
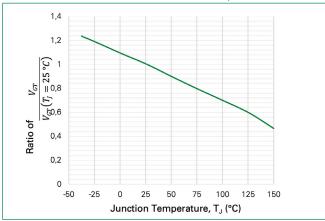


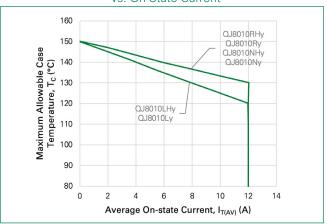
Note: Alternistors will not operate in QIV

Figure 3: Normalized DC Holding Current vs. Junction Temperature



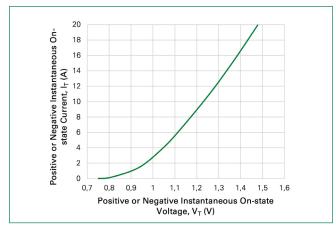
**Figure 5:**Power Dissipation (Typical) vs. RMS On-State Current



Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature



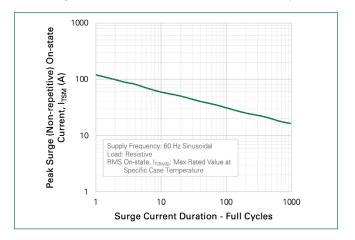
**Figure 4:**Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature




**Figure 6:**Maximum Allowable Case Temperature vs. On-State Current



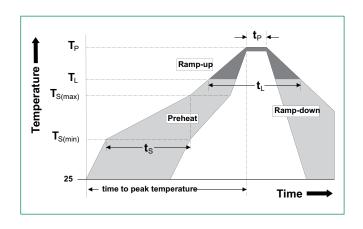
## 10 A High Temperature Alternistor and Standard (High Communication) Triacs


**Figure 7:**Typical On-state Current vs. On-state Voltage



#### Notes:

- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value


Figure 8: Surge Peak On-state Current vs. Number of Cycles



## 10 A High Temperature Alternistor and Standard (High Communication) Triacs

### **Soldering Parameters**

| Reflow Condi                              | tion                                                 | Pb – Free assembly |  |
|-------------------------------------------|------------------------------------------------------|--------------------|--|
|                                           | -Temperature Min (T <sub>s(min)</sub> )              | 150°C              |  |
| Pre Heat                                  | -Temperature Max (T <sub>s(max)</sub> )              | 200°C              |  |
|                                           | -Time (min to max) (t <sub>s</sub> )                 | 60 to 180 s        |  |
| Average ramp                              | o up rate (Liquidus Temp) ( $T_L$ ) to peak          | 5°C/second max     |  |
| T <sub>S(max)</sub> to T <sub>L</sub> - R | T <sub>S(max)</sub> to T <sub>L</sub> - Ramp-up Rate |                    |  |
| Reflow                                    | - Temperature (T <sub>L</sub> ) (Liquidus)           | 217°C              |  |
|                                           | -Time (min to max) (t <sub>s</sub> )                 | 60 to 150 seconds  |  |
| Peak Tempera                              | iture (T <sub>P</sub> )                              | 260 °C (±5 °C)     |  |
| Time within 5                             | 5°C of actual peak Temperature (t <sub>p</sub> )     | 20 to 40 seconds   |  |
| Ramp-down I                               | 5°C/second max                                       |                    |  |
| Time 25°C to                              | peak Temperature (T <sub>P</sub> )                   | 8 minutes Max.     |  |
| Do not excee                              | 280°C                                                |                    |  |
|                                           |                                                      |                    |  |

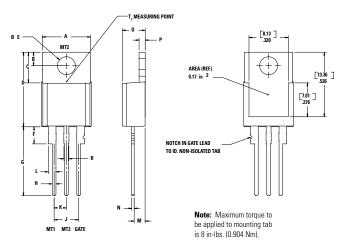


### **Physical Specifications**

| Terminal Finish   | 100% Matte Tin-plated                                         |
|-------------------|---------------------------------------------------------------|
| Body Material     | UL recognized epoxy meeting flammabilty classification 94V-0. |
| Terminal Material | Copper Alloy                                                  |

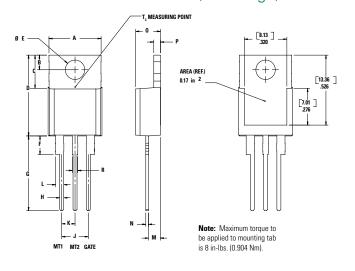
### **Design Considerations**

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.


### **Environmental Specifications**

| Test                      | Specifications and Conditions                                                 |
|---------------------------|-------------------------------------------------------------------------------|
| AC Blocking               | MIL-STD-750, M-1040, Cond A Applied<br>Peak AC voltage @ 125°C for 1008 hours |
| Temperature Cycling       | MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C, 15-min dwell-time           |
| Temperature/Humidity      | EIA/JEDEC, JESD22-A101 1008 hours;<br>320V - DC: 85°C; 85% rel humidity       |
| High Temp Storage         | MIL-STD-750, M-1031,<br>1008 hours; 150°C                                     |
| Low-Temp Storage          | 1008 hours; -40°C                                                             |
| Resistance to Solder Heat | MIL-STD-750 Method 2031                                                       |
| Solderability             | ANSI/J-STD-002, category 3 Test A                                             |
| Lead Bend                 | MIL-STD-750, M-2036 Cond E                                                    |

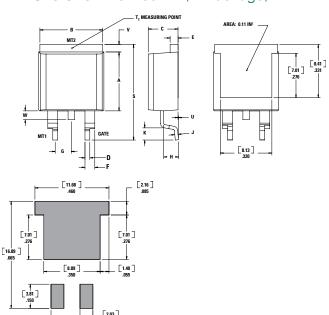



## 10 A High Temperature Alternistor and Standard (High Communication) Triacs

### **Dimensions** - TO-220AB (R-Package) - Non-Isolated Mounting Tab Common with Center Lead



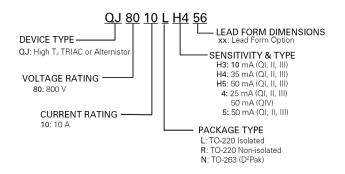
| ъ         | Milim | eters | Inches |       |  |
|-----------|-------|-------|--------|-------|--|
| Dimension | Min   | Max   | Min    | Max   |  |
| Α         | 0.380 | 0.420 | 9.65   | 10.67 |  |
| В         | 0.105 | 0.115 | 2.67   | 2.92  |  |
| С         | 0.230 | 0.250 | 5.84   | 6.35  |  |
| D         | 0.590 | 0.620 | 14.99  | 15.75 |  |
| E         | 0.142 | 0.147 | 3.61   | 3.73  |  |
| F         | 0.110 | 0.130 | 2.79   | 3.30  |  |
| G         | 0.540 | 0.575 | 13.72  | 14.61 |  |
| Н         | 0.025 | 0.035 | 0.64   | 0.89  |  |
| J         | 0.195 | 0.205 | 4.95   | 5.21  |  |
| K         | 0.095 | 0.105 | 2.41   | 2.67  |  |
| L         | 0.060 | 0.075 | 1.52   | 1.91  |  |
| M         | 0.085 | 0.095 | 2.16   | 2.41  |  |
| N         | 0.018 | 0.024 | 0.46   | 0.61  |  |
| Ο         | 0.178 | 0.188 | 4.52   | 4.78  |  |
| P         | 0.045 | 0.060 | 1.14   | 1.52  |  |
| R         | 0.038 | 0.048 | 0.97   | 1.22  |  |


### Dimensions - TO-220AB (L-Package) - Isolated Mounting Tab



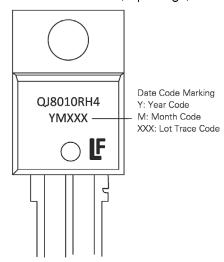
| Dimension | Milim | eteres | Inches |       |  |
|-----------|-------|--------|--------|-------|--|
| Dimension | Min   | Max    | Min    | Max   |  |
| Α         | 0.380 | 0.420  | 9.65   | 10.67 |  |
| В         | 0.105 | 0.115  | 2.67   | 2.92  |  |
| С         | 0.230 | 0.250  | 5.84   | 6.35  |  |
| D         | 0.590 | 0.620  | 14.99  | 15.75 |  |
| E         | 0.142 | 0.147  | 3.61   | 3.73  |  |
| F         | 0.110 | 0.130  | 2.79   | 3.30  |  |
| G         | 0.540 | 0.575  | 13.72  | 14.61 |  |
| Н         | 0.025 | 0.035  | 0.64   | 0.89  |  |
| J         | 0.195 | 0.205  | 4.95   | 5.21  |  |
| K         | 0.095 | 0.105  | 2.41   | 2.67  |  |
| L         | 0.060 | 0.075  | 1.52   | 1.91  |  |
| M         | 0.085 | 0.095  | 2.16   | 2.41  |  |
| N         | 0.018 | 0.024  | 0.46   | 0.61  |  |
| 0         | 0.178 | 0.188  | 4.52   | 4.78  |  |
| P         | 0.045 | 0.060  | 1.14   | 1.52  |  |
| R         | 0.038 | 0.048  | 0.97   | 1.22  |  |

# 10 A High Temperature Alternistor and Standard (High Communication) Triacs


### Dimensions - TO-263AB (N-Package) - D2-PAK Surface Mount



| Dimension | Inches |       | Millimeters |       |
|-----------|--------|-------|-------------|-------|
|           | Min    | Max   | Min         | Max   |
| Α         | 0.360  | 0.370 | 9.14        | 9.40  |
| В         | 0.380  | 0.420 | 9.65        | 10.67 |
| С         | 0.178  | 0.188 | 4.52        | 4.78  |
| D         | 0.025  | 0.035 | 0.64        | 0.89  |
| E         | 0.045  | 0.060 | 1.14        | 1.52  |
| F         | 0.060  | 0.075 | 1.52        | 1.91  |
| G         | 0.095  | 0.105 | 2.41        | 2.67  |
| Н         | 0.092  | 0.102 | 2.34        | 2.59  |
| J         | 0.018  | 0.024 | 0.46        | 0.61  |
| K         | 0.090  | 0.110 | 2.29        | 2.79  |
| S         | 0.590  | 0.625 | 14.99       | 15.88 |
| V         | 0.035  | 0.045 | 0.89        | 1.14  |
| U         | 0.002  | 0.010 | 0.05        | 0.25  |
| W         | 0.040  | 0.070 | 1.02        | 1.78  |


### **Part Numbering System**

\_ [6.60]\_



### **Part Marking System**

TO-220 AB (L and R package)
TO-263 AB (N package)

