

2.5 - 2.7 GHz 4 W High-Efficiency Amplifier

Product Overview

The QPA9907 is a high-efficiency, linearizable power amplifier targeting Band 7small-cell wireless infrastructure systems. Using InGaP/GaAs HBT technology, the product delivers high efficiency of 29.5% at +28dBm average output power while providing excellent DPD linearized ACPR of -51dBc for signal bandwidths of up to 100MHz.

The QPA9907 is housed in a 5x5mm SMT package. It is pin-to-pin compatible to QPA9901, QPA9903 and QPA9908 (high-efficiency small cell PA).

16 Pad 5 x 5 mm Package

Key Features

- 2.5 2.7 GHz
- 34.5 dB gain
- Over 35 dBm P3dB
- 29.5% PAE at +28 dBm power output
- -51 dBc ACPR DPD linearized at +28 dBm power output with 5-carrier signal
- 1.8V logic compatible PA ON/OFF control
- On chip ESD protection
- 5 x 5 mm Package

Functional Block Diagram

Applications

- 4G/5G Small-cell BTS
- 5G M-MIMO
- Repeaters/DAS
- Mobile Infrastructure
- General Purpose Wireless

Ordering Information

Part No.	Description
QPA9907TR13	2500pcs on a 13" reel
QPA9907EVB-01	2.5-2.7 GHz EVB

QOCVO

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-55 to +125 °C
RF Input Power, Pulsed CW, 50 Ω ⁽¹⁾	+10 dBm
Device Voltage (Vcc)	+5.5 V

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

1. 2500-2700 MHz, Pulsed CW, 10% duty cycle, 100us period

Recommended Operating Conditions

2.5 – 2.7 GHz 4 W High-Efficiency Amplifier

Parameter	Min	Тур	Max	Units
Device Voltage (Vcc)	+4.75	+5	+5.25	V
TCASE	-40		+105	°C
Tj for > 10 ⁶ hours MTTF			+175	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Parameter	Conditions (1)	Min	Тур	Max	Units
Operational Frequency Range		2500		2700	MHz
Test Frequency			2600		MHz
Gain (2)	At +28dBm Pout and room temperature	32	34.5		dB
Input Return Loss			-11.2		dB
Output Return Loss			-6.7		dB
Output P3dB	10 µs pulse width, 10% duty cycle	34	35		dBm
Power Added Efficiency (2)	Pout = +28 dBm	25.5	29.5		%
ACPR (Uncorrected) (2)	Pout = +28 dBm		-31.5	-28	dBc
ACPR (Uncorrected) (3)	Pout = +28 dBm		-28.7		dBc
ACPR (Corrected) (3)	Pout = +28 dBm		-51		dBc
Quiescent Current, Icq	Pins 12, 14 and 16		109		mA
Total Operating Current	Pin 5, 12, 14 and 16, Pout = +28 dBm		414		mA
Thermal Resistance, θ _{jc}	Junction to case		21.7		°C/W
V _{EN} High		1.17	1.8	Vcc	V
V _{EN} Low		0	0	0.63	V
2nd Harmonic	Pout = +28 dBm		-41		dBc
3rd Harmonic	Pout = +28 dBm		-51		dBc
Turn-on time	Measured from 50% PA enable voltage level to 90% of RF amplitude		0.33		us

Notes:

- Test conditions unless otherwise noted: All V_{CC} & V_{BIAS} = +5.0 V, V_{EN} = +1.8V, Temp = +25 °C, 50 Ω system. 1.
- LTE, 20 MHz E-UTRA Test Mode 1.1 or 3.1, PAR = 8.5 dB at 0.01% probability.
- LTE, 5X20 MHz E-UTRA LTE signal, PAR = 8.5 dB at 0.01% Probability.

Power Amplifier Enable Logic Table

Parameter	High	Low
V _{EN}	Power Amplifier On	Power Amplifier OFF

QPA9907 EVB Layout and Schematic

Notes:

See Evaluation Board PCB Information for material and stack up.

Bill of Materials - QPA9907EVB-01

Reference Des.	Value	Description	Manufacturer	Part Number
U1	-	Amplifier, QPA9907 2500-2700MHz, High-Efficiency	Qorvo	QPA9907
C1, C2	100 pF	CAP,100 pF, 0603, 5%, 50V, NPO	various	
C5, C9, C13, C17, C19	1000 pF	CAP,1000 pF, 0603, 5%, 50V, NPO	various	
C4, C8, C12, C18, C20	0.1 µF	CAP,0.1 μF, 0603, 10%, 50V, X7R	various	
C3, C7, C14	10 μF	CAP, 10 μF, 1206, 16V	various	
L1, L2	0 Ω	RES 0 Ω, 0603, 1/16W, Chip	various	
J1, J2	-	CONN. RF. SMA. F. STRT. Edge Mount	various	
J3, J4	-	Connector, 5 Pin	various	

Average Output Power (dBm)

Performance Plots - LTE

Test conditions unless otherwise noted: $V_{BIAS} = 5 \text{ V}$, $V_{CC1,2,3} = 5 \text{ V}$, $V_{EN} = 1.8 \text{ V}$, $T = +25 ^{\circ}\text{C}$, tested using a single-carrier, 20 MHz LTE signal with 8.5 dB PAR at 0.01% CCDF on a reference design fixture.

Average Output Power (dBm)

30

21

23

27

Average Output Power (dBm)

29

Performance Plots - LTE

Test conditions unless otherwise noted: V_{BIAS} = 5 V, V_{CC1,2,3} = 5 V, V_{EN} = 1.8 V, tested at 2595 MHz using a single-carrier, 20 MHz LTE signal with 8.5 dB PAR at 0.01% CCDF on a reference design fixture.

-34

21

23

27

29

Average Output Power (dBm)

Frequency = 2595MHz

33

31

Frequency = 2595MHz

33

35

31

Performance Plots - Pulse

Test conditions unless otherwise noted: V_{BIAS} = 5 V, V_{CC1,2,3} = 5 V, V_{EN} = 1.8 V, T = +25°C, tested using a pulse signal, 10% duty cycle.

Test conditions unless otherwise noted: V_{BIAS} = 5 V, V_{CC1,2,3} = 5 V, V_{EN} = 1.8 V, tested at 2595 MHz using a pulse signal, 10% duty cycle.

Performance Plots – S-parameters

Test conditions unless otherwise noted: $V_{BIAS} = 5 \text{ V}$, $V_{CC1,2,3} = 5 \text{ V}$, $V_{EN} = 1.8 \text{ V}$.

Pad Configuration and Description

Pad No.	Label	Description
1, 3, 4, 7, 8,10, 11, 13, 15	GND	Ground connection.
2	RFIN	RF input internally matched to 50Ω and DC blocked.
5	V _{BIAS}	Bias circuit supply voltage
6	V _{EN}	Amplifier enable voltage (regulated internally)
9	RF _{OUT}	RF output internally matched to 50Ω and DC shorted. External DC blocking capacitor required.
12	V _{CC3}	Supply voltage for the various amplifier stages
14	V _{CC2}	Supply voltage for the various amplifier stages
16	V _{CC1}	Driver stage supply voltage
Backside Paddle	GND	Ground connection. The back side of the package should be connected to the ground plane through as short of a connection as possible. PCB via holes under the device are recommended.

Package Marking and Dimensions

Marking: Pin 1 Indicator and Qorvo Logo

Part Number - QPA9907

Trace Code – XXXXXX Up to 8 Characters to be Assigned by sub-Contractor

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.
- 3. Contact plating: ENEPIG

PCB Mounting Pattern

Evaluation Board PCB Information

PC Board Layout

PCB Material (stackup)

Layer	Name	Material	Thickness	Constant
1	Top Overlay			
2	Top Solder	Solder Resist	0.40 mil	3.5
3	Top Layer	Copper	1.40 mil	
4	Dielectric1	RO4350	20.00 mil	3.48
5	Bottom Layer	Copper	1.40 mil	

Total thickness: 23.2mill

Notes

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Via holes are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.10").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

Tape and Reel Information – Carrier and Cover Tape Dimensions

Tape and reel specifications for this part are also available on the Qorvo website. Standard T/R size = 2500 pieces on a 13" reel.

Feature	re Measure		Size (in)	Size (mm)
	Length	A0	0.209	5.3
Covity	Width	В0	0.209	5.3
Cavity	Depth	K0	0.051	1.3
	Pitch	P1	0.315	8.0
Centerline Distance	Cavity to Perforation - Length Direction	P2	0.079	2.0
	Cavity to Perforation - Width Direction	F	0.217	5.5
Cover Tape	Width	С	0.362	9.2
Carrier Tape	Width	W	0.472	12

Tape and Reel Information – Reel Dimensions

Packaging reels are used to prevent damage to devices during shipping and storage, loaded carrier tape is typically wound onto a plastic take-up reel. The reel size is 13" diameter. The reels are made from high-impact injection-molded polystyrene (HIPS), which offers mechanical and ESD protection to packaged devices.

Feature	Measure	Symbol	Size (in)	Size (mm)
Flange	Diameter	Α	12.992	330.00
	Thickness	W2	0.717	18.20
	Space Between Flange	W1	0.504	12.80
Hub	Outer Diameter	N	4.016	102.00
	Arbor Hole Diameter	С	0.512	13.00
	Key Slit Width	В	0.079	2.00
	Key Slit Diameter	D	0.795	20.20

Tape and Reel Information – Tape Length and Label Placement

Notes:

- 1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.
- 2. Labels are placed on the flange opposite the sprockets in the carrier tape.

Recommended Solder Temperature Profile

