

Product Description

The QPC8013Q is a low loss, high isolation SP4T switch with performance optimized for LTE and diversity applications. The QPC8013Q is packaged in an ultra compact 1.1mm x 1.9mm x 0.44mm, 13-pin, Module package which allows for the smallest solution size with no need for external DC blocking capacitors (when no external DC is applied to the device ports).

Functional Block Diagram

13 Pin 1.1 x 1.9 x 0.44 mm Module Package

Feature Overview

- Qualified to AEC-Q100 Grade 3
- Excellent insertion loss and isolation performance
 - o 0.55dB Typ IL, Band 7
 - o 34dB Typ Isolation, Band 7
- Multi-Band operation from 617MHz to 6GHz
- RFFE 2.0 compatible
- Compact 1.1mm x 1.9mm x 0.44mm, Module package
- DC blocking capacitors are not required in typical applications

Applications

 Automotive Telematics Modules LTE and Diversity Applications

Ordering Information

PART NO.	DESCRIPTION
QPC8013QSB	5-pc Sample Bag
QPC8013QSR	100-pc, 7" Reel
QPC8013QTR13	10000-pc, 13" Reel
QPC8013QDK	Fully Assembled Evaluation Kit

Absolute Maximum Ratings

PARAMETER	RATING	CONDITIONS
Storage Temperature	-45 to +125 °C	
Vio	2.5 V	
SDATA, SCLK	2.5 V	
Maximum Input Power	37 dBm	1:1 VSWR, 100% Duty Cycle, CW, +85°C
(Max power point of view)	34 dBm	3:1 VSWR, 100% Duty Cycle, CW, +85°C
Maximum Input Power (Thermal point of view)	35 dBm	1:1 VSWR, 100% Duty Cycle, CW, +85°C (TJ=125°C)

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

PARAMETER	MIN.	TYP.	MAX.	UNITS
Operating Ambient Temperature (1)	-40	+25	+85	°C
V _{IO} Supply Voltage	1.65	1.8	1.95	V
V _{IO} Supply Current (Active Mode)		27		μA
V _{IO} Supply Current (Low Power Mode)		0.4		μA
SDATA, SCLK Logic Low (Input)	0.00	0.00	0.3 x VIO	V
SDATA, SCLK Logic High (Input)	0.7 x VIO	1.8	VIO	V
SDATA Logic Low (Output)	0.00	0.00	0.2 x VIO	V
SDATA Logic High (Output)	0.8 x VIO	1.8	VIO	V
SDATA, SCLK Logic High Current		0.1	5	μA
Switching Speed (90% of RF)		3.5	5.5	μs

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

⁽¹⁾ Case Temperature allows 10°C max rise over Ambient.

Electrical Specifications(1)

Test conditions unless otherwise stated: all unused RF ports terminated in 50Ω , Input and Output = 50Ω , T = 25° C, V_{IO} = 1.8V

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Insertion Loss					
RFx to RFC	617MHz to 960MHz		0.35	0.48	dB
RFx to RFC	1710MHz to 2170MHz		0.43	0.69	dB
RFx to RFC	2300MHz to 2700MHz		0.57	0.82	dB
RFx to RFC	3300MHz to 4200MHz		0.75		dB
RFx to RFC	4400MHz to 5000MHz		0.82		dB
RFx to RFC	5100MHz to 6000MHz		0.9		dB
RFx to RFC	5100MHz to 6000MHz*		0.65		dB
Isolation					
RFx to RFx	Refer to Isolation Matrix				
RFx to RFC	617MHz to 960MHz	34.5	48		dB
RFx to RFC	1710MHz to 2170MHz	27.5	37		dB
RFx to RFC	2300MHz to 2700MHz	25	34		dB
RFx to RFC	3300MHz to 3800MHz		29		dB
RFx to RFC	4200MHz to 5000MHz		26		dB
RFx to RFC	5100MHz to 6000MHz		24		dB
Harmonics					
Low Band, 2fo	Pin = +25dBm, 50Ω, fo= 824MHz		-88	-74	dBm
Low Band, 3fo	Pin = +25dBm, 50Ω, fo= 824MHz		-82	-64	dBm
Mid Band, 2fo	Pin = +25dBm, $50Ω$, fo= $1980MHz$		-81	-65	dBm
Mid Band, 3fo	Pin = +25dBm, $50Ω$, fo= $1980MHz$		-80	-60	dBm
High Band, 2fo	Pin = +25dBm, 50Ω, fo= 2700MHz		-77	-68	dBm
IMD2					
Low Band	TX Carrier @ 897.5MHz at +21dBm CW Blocker @ 1840 MHz at -15dBm Measured RX frequency @ 942.5MHz		-124		dBm
High Band	TX Carrier @ 1880MHz at +21dBm CW Blocker @ 3840 MHz at -15dBm Measured RX frequency @ 1960MHz		-123		dBm
IMD3					
Low Band	TX Carrier @ 897.5MHz at +21dBm CW Blocker @ 852.5MHz at -15dBm Measured RX frequency @ 942.5MHz		-122		dBm
High Band	TX Carrier @ 1880MHz at +21dBm CW Blocker @ 1800MHz at -15dBm		-128		dBm

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
VSWR	VSWR				
	617 MHz to 960 MHz		1.19		:1
	1710MHz to 2700MHz		1.27		:1
	3300MHz to 4200MHz		1.54		:1
	4400MHz to 5000MHz		1.68		:1
	5100MHz to 6000MHz		1.84		:1

^{*} See tuning schematic for 5000MHz to 6000MHz insertion loss

(1) Recommended EVB schematic / layout / BOM / PCB should be followed in order to achieve specified performance.

Isolation Matrix Low Band (617MHz – 960MHz)

CTATE	INSERTION	ISOLATION, TYPICAL (dB)				
STATE	PORT	RF1	RF2	RF3	RF4	
RF1	RF1		45	40	58	
RF2	RF2	46		58	40	
RF3	RF3	39	50		58	
RF4	RF4	51	39	58		
RF1	RFC		55	51	43	
RF2	RFC	54		42	52	
RF3	RFC	48	49		43	
RF4	RFC	48	48	42		

Isolation Matrix Mid Band (1710MHz – 2170MHz)

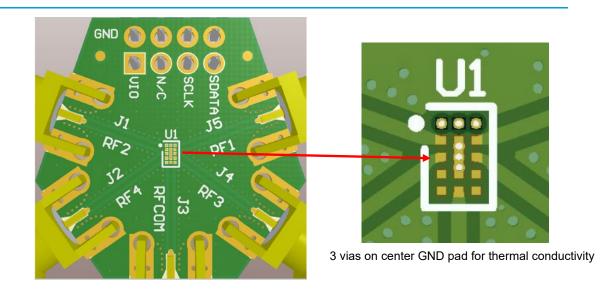
STATE	INSERTION	ISOLATION, TYPICAL (dB)					
SIAIE	PORT	RF1	RF2	RF3	RF4		
RF1	RF1		37	31	44		
RF2	RF2	37		44	32		
RF3	RF3	31	41		44		
RF4	RF4	41	31	44			
RF1	RFC		43	38	34		
RF2	RFC	42		34	39		
RF3	RFC	40	40		34		
RF4	RFC	39	41	34			

Isolation Matrix High Band (2300MHz - 2690MHz)

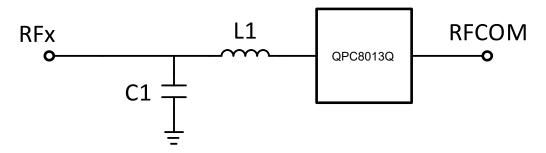
STATE	INSERTION	ISOLATION, TYPICAL (dB)			
SIAIE	PORT	RF1	RF2	RF3	RF4
RF1	RF1		34	28	40
RF2	RF2	34		40	29
RF3	RF3	28	38		40
RF4	RF4	38	28	40	
RF1	RFC		39	34	31
RF2	RFC	38		31	35
RF3	RFC	37	37		32
RF4	RFC	36	38	31	

Application Circuit Schematic

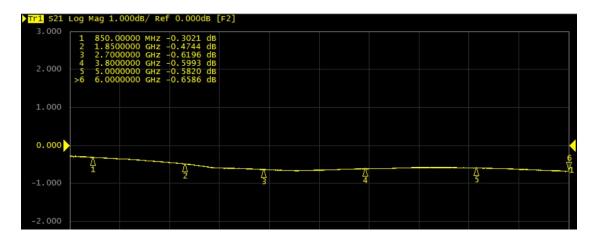
It is recommended to GND the NC pins. All RF ports should be terminated in 50 ohms.



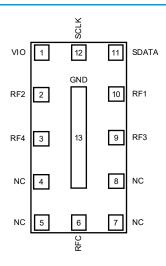
Application EVB BOM


Qty	Ref Des	Description
1	U1	SP4T, LTE, RFFE
1	PCB	PCB, QPC8013Q-4000(A)
3	C1,C2,C3	CAP, 100pF, 5%, 25V, C0G, 0201
3	R6,R7,R8	RES, 0 OHM, 5%, 1/20W, 0201
5	RF1,RF2,RF3,RF4,RFCOM	CONN, SMA, EL MINI FLT 0.068" SPE-000303
1	P1	CONN, HDR, SHRD, RT-ANG, 2x4, 0.100"
1	C4*,C5*	NOT POPULATED ITEM-1

Application EVB



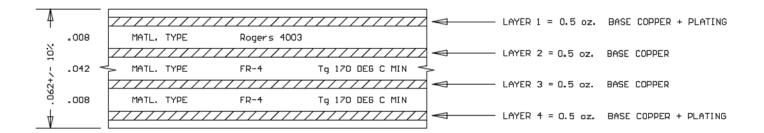
Tuning Schematic for 5000MHz - 6000MHz



NAME	VALUE	PACKAGE	DESCRIPTION
C1	0.3pF	0201	Matching for optimized RF performance*
L1	1.0nH	0201	Matching for optimized RF performance*

^{*} Matching elements are subject to change based on specific system application

Pin Configuration and Description



Top View

PIN NO.	LABEL	DESCRIPTION
1	VIO	Voltage Supply
2	RF2	RF Port
3	RF4	RF Port
4	NC	No Connect
5	NC	No Connect
6	RFC	RF Common Port
7	NC	No Connect
8	NC	No Connect
9	RF3	RF Port
10	RF1	RF Port
11	SDATA	RFFE Data Signal
12	SCLK	RFFE Clock Signal
13	GND	Ground

Evaluation Board PCB Information

RFFE Register Map

Register 0x0000 — SW_CTRL0

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:4	SPARE	Reserved for future use	0x0	No	0 - 2	R/W
3:0	SW_CTRL	0x00: Isolation 0x01: RF1 - RFC 0x02: RF2 - RFC 0x04: RF3 - RFC 0x08: RF4 - RFC	0x0	No	0 - 2	R/W

Register 0x0001 — SPARE

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:0	SPARE	Reserved for future use	0x00	No	0 - 2	R/W

Register 0x001C — PM_TRIG

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:6	PWR_MODE[1:0]	00: ACTIVE - Normal Operation 01: STARTUP - Reset all registers to default settings 10: ACTIVE - Low Power - Antenna in isolation 11: STARTUP - Reset all registers to default settings Note: Setting PWR_MODE to STARTUP is identical to a hardware reset initiated by the VIO signal.	0b10	B/G	No	R/W
5:3	TriggerMask[2:0]	Setting bit TriggerMask[N] disables Trigger[N] TriggerMask[N] updates before Trigger[N] is processed Note: When Trigger[N] is disabled, writing to a register associated with Trigger[N] sends data directly to that register. If a register is associated with multiple triggers, then all associated triggers must be disabled to allow direct writes to the associated register.	0ь000	No	No	R/W
2:0	Trigger[2:0]	Setting bit Trigger[N] loads Trigger[N]'s associated registers Note: When Trigger[N] is enabled, writing to a register associated with Trigger[N] sends data to that register's shadow. Setting the Trigger[N] bit loads data from shadow. All triggers are processed immediately and simultaneously and then cleared. Trigger[0], [1], and [2] will always read as 0.	0ь000	B/G	No	W

Register 0x001D — PRODUCT_ID

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
		Lower eight bits of Product Number				
7:0	PROD_ID[7:0]	Note: These are read-only registers. However, as part of the special programming sequence for writing USID, a write command sequence is performed on one or both registers, but does not update them. See MIPI 6.6.2 for details.	0x17	No	No	R

$\textbf{Register 0x001E} - \textbf{MANUFACTURER_ID}$

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
		Lower eight bits of MIPI Manufacturer ID				
7:0	MFG_ID[7:0]	Note: These are read-only registers. However, as part of the special programming sequence for writing USID, a write command sequence is performed on one or both registers, but does not update them. See MIPI 6.6.2 for details.	0x34	No	No	R

Register 0x001F — MAN_USID

Bit(s)	Field Name	Description Rese		B/G	Trig	R/W
7:6	RESERVED	Reserved for future use	0b00	No	No	R
		Upper two bits of MIPI Manufacturer ID				
5:4	MFG_ID[9:8]	Note: This is a read-only register. However, as part of the special programming sequence for writing USID, a write command sequence is performed on this register, but does not update it. See MIPI 6.6.2 for details.	0b01 No	No	No	R
3:0	USID[3:0]	Programmable Unique Slave ID Note: USID is only writeable using a special programming sequence. See MIPI 6.6.2 for details.	0x8	No	No	R/W

Register 0x0020 — EXT_PRODUCT_ID

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
		Upper eight bits of Product Number				
7:0	PROD_ID[15:8]	Note: These are read-only registers. However, as part of the special programming sequence for writing USID, a write command sequence is performed on one or both registers, but does not update them. See MIPI 6.6.2 for details.	0x00	No	No	R

Register 0x0021 — REVISION_ID

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:6	MAJOR_REV[1:0]	Major Revisions - all layer	0b00	No	No	R
5:4	MINOR_REV[1:0]	Minor Revisions - metal only	0b00	No	No	R
3:0	MISC_REV[3:0]	Misc Revisions - mask variants	0b0001	No	No	R

Note: The REVISION_ID register contains this product's revision number which is set by Qorvo according to manufacture date. The value may change throughout the product life cycle.

Register 0x0022 — GSID0-1

Bit((s) Fiel	d Name	Description	Reset	B/G	Trig	R/W
7:4	4 GSI	D0[3:0]	Group Slave ID0	0x0	No	No	R/W
3:0	0 GSI	D1[3:0]	Group Slave ID1	0x0	No	No	R/W

Register 0x0023 — UDR_RST

Bit(s) Field Name	Description	Reset	B/G	Trig	R/W
		Setting this bit initiates a software reset				
7	UDR_RST	Note: On software reset, this register and all User Defined registers (UDRs) are reset. This bit will always read as 0.	0	No	No	W
6:0) RESERVED		0x00	No	No	R

Register 0x0024 — ERR_SUM

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7	SPARE	Reserved for future use	0	No	No	R/W
6	CMD_FR_P_ERR	Command Frame received with a parity error 0		No	No	R/W
5	CMD_LEN_ERR	Command Sequence received with an incorrect length	0	No	No	R/W
4	ADDR_FR_P_ERR	Address Frame received with a parity error	0	No	No	R/W
3	DATA_FR_P_ERR	Data Frame received with a parity error	0	No	No	R/W
2	RD_INVLD_ADDR	Read Command Sequence received with an invalid address	0	No	No	R/W
1	WR_INVLD_ADDR	Write Command Sequence received with an invalid address	0	No	No	R/W
0	BID_GID_ERR	Read Command Sequence received with a BSID or GSID	0	No	No	R/W
		Note: Reading this register resets this register.				

Register 0x002C — TEST_PATT

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:0	TEST PATT[7:0]	Test Pattern	0xD2	No	No	R

Power On and Off Sequence

It is very important that the user adheres to the correct timing sequences in order to avoid damaging the device. Figures are NOT drawn to scale.

1. Once VIO is powered down to 0V, wait a minimum of 10 μ s to reapply power to VIO. (see figure 3)

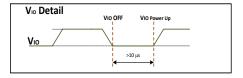


Figure 1 Digital Supply Detail

- VIO must be applied for a minimum of 120 ns before sending SDATA/SCLK to ensure correct data transmission. (see figure 5)
- 3. VIO must be applied for a minimum of 15 μ s before applying RF power. (see figure 5)
- 4. Wait a minimum of 5 μ s after RFFE bus is idle to apply an RF signal. (see figure 5)

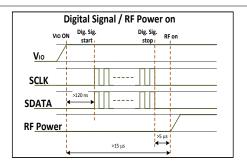
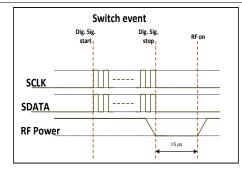
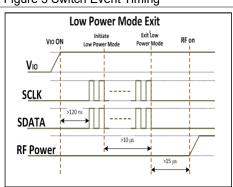
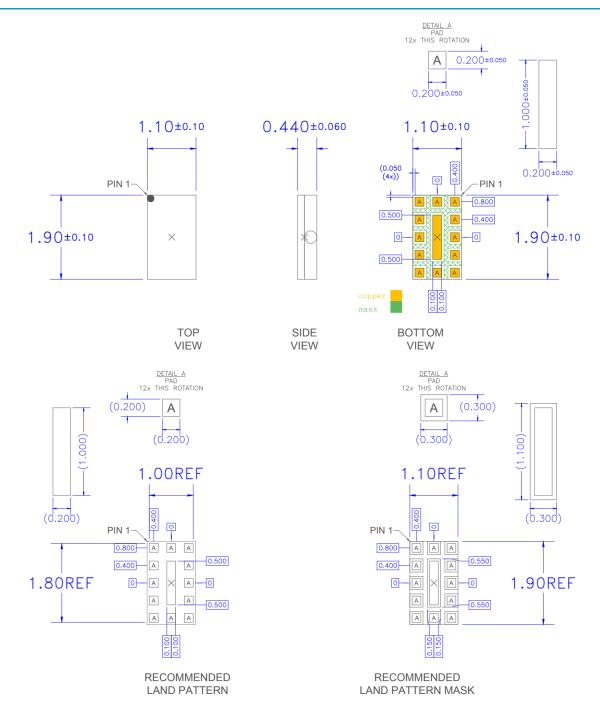


Figure 2 Digtial Signal / RF Power-On Detail

5. RF power must not be applied during switching events. To ensure this, remove RF power before completing a register write that will change the switch mode. (see figure 6)

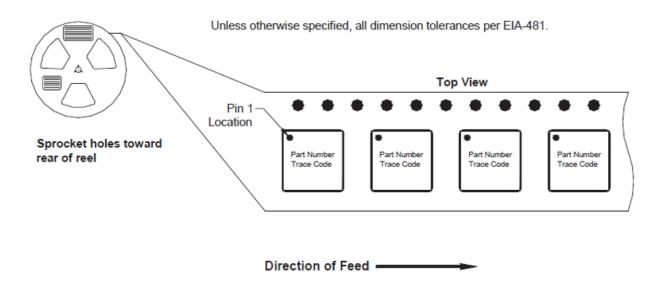




Figure 3 Switch Event Timing

6. If "Low Power Mode" is utilized, there must be a delay of 10 μ s before exiting "Low Power Mode". (see figure 7)

Figure 4 Low Power Mode Exit Timing

Mechanical Information

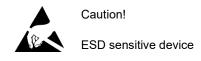


Notes:

- 1. All dimensions are in milimeters. Angles are in degrees.
- 2. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 3. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

Tape and Reel Information

Qorvo Part Number	Reel Diameter Inch (mm)	Hub Diameter Inch (mm)	Width (mm)	Pocket Pitch (mm)	Feed	Units Per Reel
QPC8013QTR13-10K	13 (330)	4 (102)	8	4	Single	10000
QPC8013QSR	7 (178)	2.5 (63)	8	4	Single	100



1.10 mm x 1.90 mm (Carrier Tape Drawing with Part Orientation).

Handling Precautions

PARAMETER	RATING	STANDARD
ESD – Human Body Model (HBM)	Class 2 (2000V)	ESDA/JEDEC JS-001-2012
ESD – Charge Device Model (CDM)	Class C3 (1000V)	ESDA/JEDEC JS-002-2012
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package lead plating: ENEPIG

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- SVHC Free
- PFOS Free

