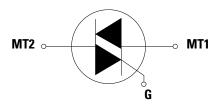

### 12 A High Temperature Alternistor Triacs






### **Agency Approvals and Environmental**

| <b>Environmental Approvals</b> | Agency Approvals              |
|--------------------------------|-------------------------------|
| HF RoHS                        | <b>AL</b> * L Package: E71639 |

### **Product Summary**

| Symbol               | Value    | Unit |
|----------------------|----------|------|
| I <sub>T(RMS)</sub>  | 12       | А    |
| $V_{DRM}/V_{RRM}$    | 600      | V    |
| I <sub>GT (Q1)</sub> | 35 or 50 | mA   |

#### **Schematic Symbol**



### **Description**

This 12 A high temperature Alternistor TRIAC, offered in TO-220AB, TO-220 isolated, and TO-263 packages, has 150 °C maximum junction temperature (T<sub>i</sub>) and 153 A ITSM (60 Hz).

This series enables easier thermal management and higher surge handling capability in AC power control applications such as heater control, motor speed control, lighting controls, and static switching relays. Alternistor TRIAC operates in quadrants I, II, and III, and offers high performance in applications requiring high commutation capability.

### **Features & Benefits**

- High T, of 150°C
- Voltage capability of 600 V
- Surge capability of 153 A at 60Hz half cycle
- Mechanically and thermally robust TO-220 clip-attach assembly
- Internally-isolated TO-220 package
- Halogen-free and RoHScompliant
- High dv/dt up to 1000 V/µs

### **Applications**

TRIAC is an excellent AC switch in applications such as heating, lighting, and motor speed controls.

Typical applications are:

- Heater control such as coffee brewer, tankless water heater, and infrared heater
- AC solid-state relays
- Light dimmers including incandescent and LED lighting
- Motor speed control in kitchen appliances, power tools, home/ brow/white goods and light industrial applications such as compressor motor control

Alternistor TRIAC is used with high inductive loads requiring high commutation capability. Internally isolated packages offer better heat sinking with higher isolation voltage.



## 12 A High Temperature Alternistor Triacs

### Maximum Ratings — Alternistor Triac (3 Quadrants)

| Symbol            | Characteristic                                            | Conditions                                                                  |                         | Value                   | Unit   |
|-------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------|-------------------------|--------|
|                   | Pro On State Current (Full Sine Move)                     | QVxx12LHy                                                                   | T <sub>C</sub> = 120 °C | 12                      | А      |
| T(RMS)            | I <sub>T(RMS)</sub> Rms On-State Current (Full Sine Wave) | QVxx12RHy / QVxx12NHy                                                       | $T_{\rm C}$ = 135 °C    | 12                      | A      |
| 1                 | Non-Repetitive Surge Peak On-State Current                | f = 50 Hz, t = 20                                                           | ) ms                    | 140                     | Α      |
| TSM               | (Single Half Cycle, $T_j$ Initial = 25°C)                 | f = 60 Hz, t = 16.7 ms                                                      |                         | 153                     | A      |
| l²t               | I²t Value For Fusing                                      | $t_{p} = 8.3 \text{ ms}$                                                    |                         | 97                      | $A^2s$ |
| di/dt             | Critical Rate Of Rise Of On-State Current                 | f = 60 Hz, T <sub>J</sub> = 150 °C                                          |                         | 100                     | A/μs   |
| I <sub>GTM</sub>  | Peak Gate Trigger Current                                 | $t_p \le 10  \mu\text{s}, \ I_{GT} \le I_{GTM}, T_J = 150 ^{\circ}\text{C}$ |                         | 4                       | А      |
| $P_{G(AV)}$       | Average Gate Power Dissipation                            | $T_J = 150  ^{\circ}\text{C}$                                               |                         | 0.5                     | W      |
| T <sub>stg</sub>  | Storage Temperature Range                                 | -                                                                           |                         | -40 to 150              | °C     |
| T <sub>vJ</sub>   | Operating Junction Temperature Range                      | -                                                                           |                         | -40 to 150              | °C     |
| $V_{DSM}/V_{RSM}$ | Non Repetitive Surge Peak Off-State Voltage               | pulse width = 100 μs; V                                                     | <sub>DRM</sub> = 600 V  | $V_{DSM}/V_{RSM} + 100$ | V      |

xx = voltage/10; y = sensitivity

#### **Thermal Characteristics**

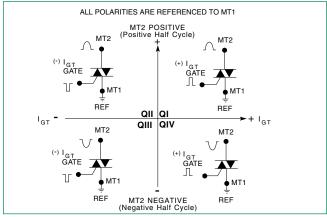
| Symbol            | Characteristic                            |                       | Value | Unit |
|-------------------|-------------------------------------------|-----------------------|-------|------|
| D                 | Thermal Resistance, Junction-To-Case (AC) | QVxx12RHy / QVxx12NHy | 0.9   | W    |
| R <sub>thJC</sub> | mermai Resistance, Junction-10-Case (AC)  | QVxx12LHy             | 1.85  | VV   |

### **Electrical Characteristics** (TJ = 25°C, unless otherwise specified) — **Alternistor Triac** (3 Quadrants)

| 0                            | Combal Description Conditions                                                              |                                                          | QVxx12xH4                                               |      | 14  | QVxx12xH5 |      |     |     |      |
|------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|------|-----|-----------|------|-----|-----|------|
| Symbol                       | Description                                                                                | Conditions                                               |                                                         | Min  | Тур | Max       | Min  | Тур | Max | Unit |
| I <sub>GT</sub>              | DC Gate Trigger Current                                                                    | V - 12V B - 600                                          | I - II - III                                            | -    | -   | 35        | -    | -   | 50  | mA   |
| $V_{\rm GT}$                 | DC Gate Trigger Voltage                                                                    | $V_D = 12V R_L = 60\Omega$                               | I-II-III                                                | -    | -   | 1.2       | -    | -   | 1.2 | V    |
| $V_{GD}$                     | Gate Non-trigger Voltage                                                                   | $V_D = V_{DRM} R_L = 3.3k\Omega T_J = 150$ °C            | I-II-III                                                | 0.15 | -   | -         | 0.15 | -   | -   | V    |
| I <sub>H</sub>               | Holding Current                                                                            | $I_{T} = 100 \text{mA}$                                  |                                                         | -    | -   | 50        | -    | -   | 50  | mA   |
| dv/dt                        | Critical Rate-of-rise of                                                                   | $V_D = V_{DRM}$ Gate Open $T_J = 150$ °C                 |                                                         | 500  | -   | -         | 750  | -   | -   | V/µs |
| uv/ut                        | Off-stage Voltage                                                                          | $V_D = 2/3 V_{DRM}$ Gate Open $T_J = 150$ °C             |                                                         | 1000 | -   | -         | 1000 | -   | -   | ν/μδ |
| (dv/dt)c                     | -                                                                                          | $(di/dt)c = 8.6 \text{ A/ms } T_J = 150^{\circ}\text{C}$ | $(di/dt)c = 8.6 \text{ A/ms T}_J = 150^{\circ}\text{C}$ |      | -   | -         | 50   | -   | -   | V/µs |
|                              |                                                                                            |                                                          | I                                                       | -    | 1   | -         | -    | 1   | -   |      |
| t <sub>gt</sub> Turn-on Time | Turn-on Time $I_G = 2 \times I_{GT} \text{ PW} = 15 \mu \text{s} I_T = 22.6 \text{ A(pk)}$ | П                                                        | -                                                       | 2    | -   | -         | 2    | -   | μs  |      |
|                              |                                                                                            | Ш                                                        | -                                                       | 7    | -   | -         | 10   | -   |     |      |

xx = voltage/10; x = sensitivity

#### **Static Characteristics**


| Symbol                                                   | Description                        | Conditions                                                                       | Maximum Value | Unit |
|----------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------|---------------|------|
| $V_{TM}$                                                 | Peak On-state Voltage              | $I_{T} = 17A t_{p} = 380 \mu s$                                                  | 1.60          | V    |
|                                                          |                                    | $V_D = V_{DRM}/V_{RRM}$ , $T_J = 25$ °C                                          | 5             | μΑ   |
| I <sub>DRM</sub> / I <sub>RRM</sub> Off-state Current, I | Off-state Current, Peak Repetitive | $V_{D} = V_{DRM}/V_{RRM}$ , $T_{J} = 150 \text{ °C}$ , $V_{DRM} = 600 \text{ V}$ | 4             | mA   |
| $V_{T0}$                                                 | Threshold Voltage                  | T <sub>J</sub> = 150°C                                                           | 0.85          | V    |
| $R_{\scriptscriptstyle D}$                               | Dynamic Resistance                 | $T_J = 150^{\circ}C$                                                             | 23            | mΩ   |



### 12 A High Temperature Alternistor Triacs

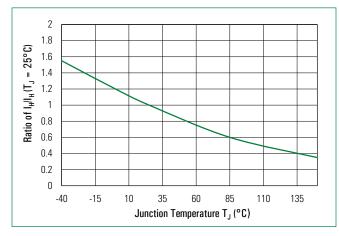

### **Performance Curves**

Figure 1: Definition of Quadrants

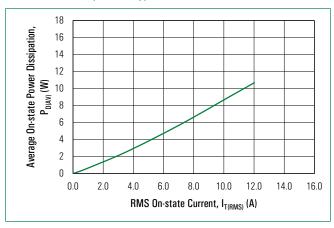
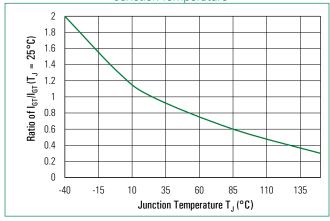
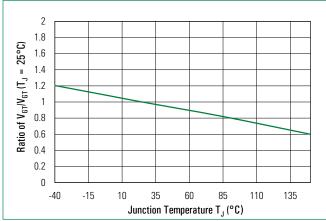


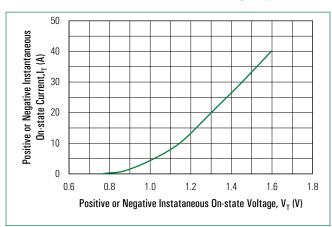
Note: Alternistors will not operate in QIV

Figure 3:
Normalized DC Holding Current vs. Junction Temperature



**Figure 5:** Power Dissipation (Typical) vs. RMS On-State Current



Figure 2:
Normalized DC Gate Trigger Current for All Quadrants vs.
Junction Temperature



**Figure 4:**Normalized DC Gate Trigger Voltage for All Quadrants vs.
Junction Temperature



**Figure 6:**On-State Current vs. On-State Voltage (Typical)



## 12 A High Temperature Alternistor Triacs

Figure 7: Maximum Allowable Case Temperature vs. RMS On-State Current

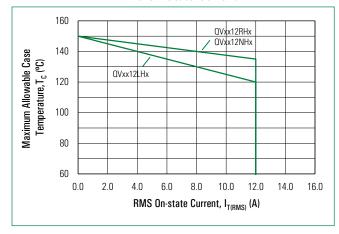
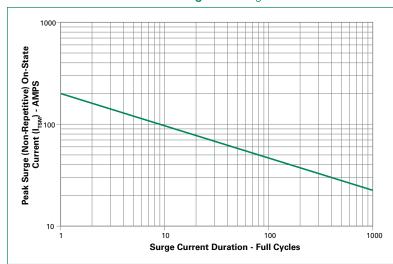
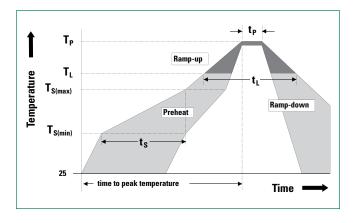




Figure 8: Surge Peak On-State Current vs. Number of Cycles



Supply Frequency: 60Hz Sinusoidal Load: Resistive


RMS On-State [ $I_{T(RMS)}$ ]: Max Rated Value at Specific Case Temperature

#### Notes

- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

### **Soldering Parameters**

| oblacing raidiffectors  |                                                |                    |  |
|-------------------------|------------------------------------------------|--------------------|--|
| Reflow Condition        |                                                | Pb – Free assembly |  |
|                         | -Temperature Min (T <sub>s(min)</sub> )        | 150°C              |  |
| Pre Heat                | -Temperature Max (T <sub>s(max)</sub> )        | 200°C              |  |
|                         | -Time (min to max) (t <sub>s</sub> )           | 60 – 180 s         |  |
| Average ram<br>peak     | p up rate (Liquidus Temp) (T <sub>L</sub> ) to | 5°C/s (Max)        |  |
| $T_{S(Max)}$ to $T_L$ - | Ramp-up Rate                                   | 5°C/s (Max)        |  |
| Reflow                  | -Temperature (T <sub>L</sub> ) (Liquidus)      | 217°C              |  |
| nellow                  | -Time (t <sub>L</sub> )                        | 60 – 150 seconds   |  |
| Peak Temper             | rature (T <sub>P</sub> )                       | 260 °C (±5)        |  |
| Time within             | 5°C of actual peak Temperature $(t_p)$         | 20 – 40 s          |  |
| Ramp-down               | Rate                                           | 5°C/s (Max)        |  |
| Time 25°C to            | peak Temperature (T <sub>p</sub> )             | 8 minutes Max.     |  |
| Do not exce             | ed                                             | 280°C              |  |





## 12 A High Temperature Alternistor Triacs

### **Physical Specifications**

| Terminal Finish   | 100% Matte Tin-plated                                    |
|-------------------|----------------------------------------------------------|
| Body Material     | UL Recognized compound meeting flammability rating 94V-0 |
| Terminal Material | Copper Alloy                                             |


### **Design Considerations**

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

### **Environmental Specifications**

| Test                       | Specifications and Conditions                                                 |
|----------------------------|-------------------------------------------------------------------------------|
| AC Blocking                | MIL-STD-750, M-1040, Cond A Applied<br>Peak AC voltage @ 150°C for 1008 hours |
| Temperature Cycling        | MIL-STD-750, M-1051, 1000 cycles; -55°C to +150°C; 15-min dwell time          |
| Temperature/Humidity       | EIA / JEDEC, JESD22-A101, 1008 hours; 160V - DC: 85°C; 85% rel humidity       |
| Resistance to Solder Heat  | MIL-STD-750 Method 2031                                                       |
| Solderability              | ANSI/J-STD-002, category 3, Test A                                            |
| Lead Bend                  | MIL-STD-750, M-2036 Cond E                                                    |
| Moisture Sensitivity Level | Level 1, JEDEC-J-STD-020                                                      |
| UHAST                      | JESD22A-118, 96 hrs, 130°C/85% RH                                             |
| IOL                        | MIL-STD-750 Method 1037                                                       |

### Dimensions - TO-220AB (R-Package) - Non-Isolated Mounting Tab Common with Center Lead



| Note:  | Maximum torque to be applied        |
|--------|-------------------------------------|
| to mou | inting tab is 8 in-lbs. (0.904 Nm). |

| n         | Inc   | hes   | Millin | neters |
|-----------|-------|-------|--------|--------|
| Dimension | Min   | Max   | Min    | Max    |
| Α         | 0.380 | 0.420 | 9.65   | 10.67  |
| В         | 0.105 | 0.115 | 2.66   | 2.92   |
| С         | 0.230 | 0.250 | 5.84   | 6.35   |
| D         | 0.590 | 0.620 | 14.99  | 15.75  |
| E         | 0.142 | 0.147 | 3.61   | 3.73   |
| F         | 0.110 | 0.130 | 2.79   | 3.30   |
| G         | 0.540 | 0.575 | 13.72  | 14.61  |
| Н         | 0.025 | 0.035 | 0.64   | 0.89   |
| J         | 0.195 | 0.205 | 4.95   | 5.21   |
| K         | 0.095 | 0.105 | 2.41   | 2.67   |
| L         | 0.060 | 0.075 | 1.52   | 1.91   |
| M         | 0.085 | 0.095 | 2.16   | 2.41   |
| N         | 0.018 | 0.024 | 0.46   | 0.61   |
| 0         | 0.178 | 0.188 | 4.52   | 4.78   |
| Р         | 0.045 | 0.060 | 1.14   | 1.52   |
| R         | 0.038 | 0.048 | 0.97   | 1.22   |

